

GTAconsultants

Telopea Urban Renewal Master Plan Traffic and Transport Assessment

Telopea Urban Renewal Master Plan

Traffic and Transport Assessment

Issue: A 27/04/17

Client: Land and Housing Corporation
Reference: 16S1627000
GTA Consultants Office: NSW

Quality Record

Issue	Date	Description	Prepared By	Checked By	Approved By	Signed
A	$28 / 04 / 17$	Final report	Damell Cordova	Karen McNatty	Brett Maynard	B.7.7.Maymard

Table of Contents

Executive Summary 1

1. Introduction 3
1.1 Overview 3
1.2 Site Context 3
1.3 Report Structure 4
1.4 Expert Panel Review 4
1.5 References 5
2. Existing Transport Conditions 6
2.1 Road Network 6
2.2 Intersection Capacity Assessment 7
2.3 Midblock Capacity Assessment 14
2.4 Traffic Safety 17
2.5 Car Parking 18
2.6 Existing Demographics a nd Travel Characteristics 19
2.7 Public Transport 23
2.8 Active Transport 24
3. Master Plan 31
3.1 Land Uses 31
3.2 Site Layout and Access 33
4. Car Parking 36
4.1 Off-Street Car Parking Requirements 36
4.2 Off-Street Recommended Parking Rates 36
4.3 Bicycle Parking 38
4.4 On-street Parking Provisions 38
5. Sustainable Transport Infrastructure 39
5.1 Walking and Cycling Network 39
5.2 Public Transport 39
5.3 Promotion of Susta inable Tra nsport 40
6. Traffic Impact Assessment 42
6.1 Traffic Generation 42
6.2 Distribution and Assignment 43
6.3 Traffic Impacts 44
6.4 Intersection Upgrades Delivery Pla n 55
7. Local Area Traffic Management 60
7.1 Overview 60
7.2 LATM Treatment Types 60
7.3 Application of LATM to Telopea 62
7.4 Pedestrian Safety 62
8. Conclusion 63

Appendices

A: Survey Results
B: SIDRA Intersection Results (Intemal Intersections)
C: SIDRA Intersection Results (Extemal Intersections)
D: Traffic Generation

Figures

Figure 1.1: Master Plan Context 3
Figure 2.1: Pennant HillsRoad 6
Figure 2.2: Kissing Point Road 7
Figure 2.3: Existing Weekday AM Peak Hour Traffic Volumes - Intemal Intersections 8
Figure 2.4: Existing Weekday PM Peak Hour Traffic Volumes - Intemal Intersections 9
Figure 2.5: Existing Weekday AM Peak Hour Traffic Volumes - Extemal Intersections 10
Figure 2.6: Existing Weekday PM Peak Hour Traffic Volumes - Extemal Intersections 11
$\begin{array}{ll}\text { Figure 2.7: } & \begin{array}{l}\text { Unsafe Traffic Movement at the Pennant Hills Rd/ Evans Rd/ Lloyds Av } \\ \text { Intersection }\end{array}\end{array}$
Figure 2.8: Recorded Road Crash History 17
Figure 2.9: Parking Situation at Telopea Railway Station, AM Peak 19
Figure 2.10: Telopea Master Plan Area Travel Zone 20
Figure 2.11: JTW Travel Modes by Residents from Selected TZ 21
Figure 2.12: Top Destination Areas for Workers Commuting from Telopea 21
Figure 2.13: JTW Travel Modes by Workers to the Selected TZ 22
Figure 2.14: Top Origin Areas for Workers Commuting to Telopea 23
Figure 2.15: BusTransport Network 24
Figure 2.16: Telopea Master Plan Area within the Pa ramatta Bike Plan (2009) 25
Figure 2.17: Cycling Network 26
Figure 2.18: Telopea Ra ilway Station Pedestrian Desire Lines - AM Peak Period 27
Figure 2.19: Pedestrian/ Vehicle Conflicts 28
Figure 2.20: Incidents near the Evans Road and Shortland Street Intersection 29
Figure 3.1: Land Use Strategy Map 32
Figure 3.2: Telopea Road Hierarchy Plan 34

Figure 4.1: Light Rail Stop 400 metre Catchment 37
Figure 5.1: Indicative Alignment of the Pa ramatta Light Rail Stage 1 Network 40
Figure 6.1: Telopea Master Plan Area Work-Related Travel Pattems 44

Tables

Table 1.1: Expert Panel Review Comments and Responses 4
Table 2.1: \quad Selected Road Attributes 6
Table 2.2: SIDRA INTERSEC TION Level of Service Criteria 12
Table 2.3: Existing Operating Conditions- Intemal Intersections (un-signalised) 12
Table 2.4: Existing Operating Conditions - Extemal Intersections 13
Table 2.5: Environmental Capacity and Speed Performance Standards 15
Table 2.6: Evaluation of Environmental Capacity \& Speed Performance 16
Table 2.7: \quad Bus Servic es through Telopea 24
Table 3.1: Indicative Land Uses 31
Table 3.2: Road Hierarchy Summary 35
Table 4.1: DCP a nd SEPP Parking Requirements 36
Table 4.2: Recommended Telopea Local Area Parking Rates 37
Table 4.3: DCP Bicycle Parking Requirements 38
Table 6.1: \quad Traffic Generation Estimates 42
Table 6.2: Intemal Intersections - Performance with Development Traffic and Existing Layouts 45
Table 6.3: Recommended Mitigating and Intersection Works - Intemal Intersections 46
Table 6.4: Post-Development Operating Conditions with Upgrades- Intemal Intersections 47
Table 6.5: Intemal Intersections Operating Conditions 48
Table 6.6: Development Operating Conditions with Existing Arrangements - Extemal Intersections 51
Table 6.7: Recommended Mitigation and Intersection Works - Extemal Intersections 52
Table 6.8: Post-Development Operating Conditions with Upgrades - Extemal Intersections 52
Table 6.9: Extemal Intersections Operating Conditions- Post Development - 15 years 54
Table 6.10: Five Years- Operating Conditions- Intemal Intersections (without mitigation measures) 55
Table 6.11: 15 Years Operating Conditions - Intemal Intersections (without mitigation measures) 56
Table 6.12: 5 Years Operating Conditions - Extemal Intersections (without mitigation measures) 57
Table 6.13: $\quad 15$ Years Operating Conditions - Extemal Intersections (without mitigations measures) 58
Table 7.1: Use of LATM Devices 61

Executive Summary

The renewal of Telopea will build upon Telopea'skey assets to create a more vibrant community which is loc ated within proximity to Pa rramatta's growing city centre.

Telopea in its end state proposes to provide between 3,500 to 4,500 additional residential dwellings, 7,000 square metres of retail space (including a supermarket) and 3,000 square metres of new community space.

GTA Consultants has been engaged by the NSW Land and Housing Corporation (LaHC) to assess the traffic and transport impacts relating to the Telopea Master Plan.

The Master Plan a rea is loc ated to the east of Telopea Railway Station, with Kissing Point Road to the south and connections to Pennant Hills Road (Cumberland Highway) in the north via collector routes Sturt Street, Marshall Road, Adderton Road and Evans Road.

Telopea is serviced by Telopea Railway Station (Carlingford Line) operated by Sydney Tra ins and bus servic esoperated by Sydney buses. There are curently two existing bus servic es (545 and 513) which connect Telopea to key destinations inc luding Parramatta, Chatswood, Meadowbank and Carlingford. The NSW Govemment announced Telopea as a preferred light rail stop as part of the proposed Parramatta Light Rail project. The Parramatta Light Rail project is expected to benefit Telopea through linka ge with the Greater Parramatta area and replace the heavy rail with a more frequent light rail service.

The indicative yields indic ate the development will likely generate an additional 1,689 trips during the AM peak and 1,811 trips during the PM peak. The additional trips in combination with the existing traffic data collected were used to model the future operation of intemal and extemal intersections.

A structured road hierarchy defines the intemal road network well and would assist in managing the impacts because of the associated development traffic generation. New road connections will increase the site accessibility and pemeability, though traffic calming measures would be considered to discourage through traffic and rat-running.

To encourage the use of public transportation and reduce reliance on private vehicle use, a balanced approach to parking rates should be applied to developments both within the core development area adjacent to the station and development extemal to this.

The following key intemal intersections within the Master Plan area were assessed in terms of existing and future performance:

- Adderton Road/ Manson Street
- Sturt Street/ Manson Street
- Sturt Street/ Evans Road
- Shortland Street/ Evans Road.

Intersection analysis a nd site observations indic ate that while these intersections currently operate satisfactorily, traffic exiting Telopea onto the arterial roads Pennant Hills Road and Kissing Point Road experience delays during peak periods due to the existing congestion. With appropriate intersection upgradesto address significant traffic volume inc reases, the above intersections would operate satisfactorily with the Master Plan area.

A new road connection across the railway coridor linking Sturt Street and Adderton Road is proposed to provide an altemate local access option, improving site linkage and circulation, as
well as providing access to improve public transport interchange facilitiesthat would be delivered as part of the Pa ramatta Light Rail project as well as the Master Plan. Traffic signals would be required forthe rail crossing, integrated with Adderton Road.

The following key extemal intersections that provide access to the Master Plan area were assessed in terms of existing and future performance:

- Pennant Hills Road/ Adderton Road
- Pennant HillsRoad/ Coleman Avenue
- Pennant HillsRoad/ Evans Road
- Kissing Point Road/ Sturt Street
- Kissing Point Road/ Adderton Road.

Intersection a nalysis a nd site observations indic ate that these intersections generally operate satisfactorily under existing conditions, however some movements are approaching capacity and experience extended delays. It is evident the arterial roads Kissing Point Road and Pennant Hills Road experience signific ant comidor delays during peak periods. It is understood that Roads and Maritime Servic es (Roads and Maritime) is investigating signalisation of the Pennant Hills Road/ Evans Road intersection and it is assumed that these works could be undertaken in the short to medium term.

With appropriate intersection upgrades (including signal optimisation and changes to linemarking) to address the traffic volume increases, the analysed intersections could operate satisfactorily with the Master Plan, except for the Pennant Hills Road/ Adderton Road intersection. Intersection modelling suggests that an additional right tum lane on Pennant Hills Road and additional short left tum lane on Adderton Road are required at this location to maintain satisfactory intersection operation. This will require further deta iled design and disc ussions with Roads and Maritime.

Mid-block traffic surveys indic ate a signific ant a mount of through traffic on local roads such as Evans Road and Marshall Road for connectivity between Pennant Hills Road and Kissing Point Road, with speeds slightly exceeding posted speed limits. Traffic calming mea sures to discourage through traffic on local roads would need to be considered, while still mainta ining appropriate bus access and travel times

The inclusion of new pedestrian and cycling links, construction of pedestrianised/ shared roads could potentially improve the permeability of the active transport network throughout the study area, access to the core town centre and Telopea Railway Station.

1. Introduction

1.1 Overview

The NSW Land and Housing Corporation (LAHC) in partnership with Parramatta City Council (PCC) has commissioned a master plan for the Telopea renewal precinct, aimed at accommodating additional housing, including social housing.

GTA Consultants (GTA) has been engaged to prepare a traffic and transport study to inform the MasterPlan.

The Master Plan area currently comprises the following land uses:

- a round 1,360 dwellings including a mix of private, social and affordable housing
- Telopea Railway Station \& Sydney Trains rail comidor
- Waratah Shopping Centre, consisting of a cluster of small retail outlets a round an IGA supermarket
- Parramatta City Council library
- Telopea Primary School
- childcare centre.

1.2 Site Context

The Telopea Master Plan area is in Parramatta City Council Local Govemment Area (LGA), a round five kilometres north-east from Parramatta CBD and 17 kilometres north-west from Sydney CBD.

The Master Plan area is generally bounded to the south by Kissing Point Road, to the west by Adderton Road and the Carlingford Railway Line, to the north by Howard Street (with Pennant Hills Road further north of the Master Plan area), and to the east by The Ponds Creek reserve.

Figure 1.1 shows Telopea in context within the surrounding local area.
Figure 1.1: Master Plan Context

[^0]
1.3 Report Struc ture

This report documents the key findings of GTA's review and assessment that seek to assess the traffic and transport aspects of the Telopea MasterPlan, including identific ation of key issues and the necessary transport upgrades to support any additional population because of the Master Plan.

Following this introductory section, the remainder of this report is structured as follows:

- review of existing travel pattems
- review of existing and future road, public transport and ac tive transport network
- issues and opportunities
- assessment of the development traffic generation and study a rea intersection impacts
- overview of the Telopea Master Plan
- overview of the strategic modelling process
- review of the residential parking controls
- intersection upgra des delivery plan.

1.4 Expert Panel Review

Prior to the Master Plan finalisation, an Expert Review Panel (facilitated by GoldbergBlaise) reviewed the draft Telopea Master Plan. Following the review, the document Expert Review: Draft Telopea Master Plan, October 2016 was prepared by GoldbergBla ise which included key recommendations a nd comments for consideration to finalise the draft Telopea Master Plan.

In relation to the traffic, parking, public transport and ac cessibility recommendations from the Expert Panel Review have been incorporated and/or resolved as part of the Traffic and Transport Assessment for finalisation of the Telopea Master Plan as summarised in Table 1.1.

Table 1.1: Expert Panel Review Comments and Responses

Expert Review Comments and Responses	Section of this report
"A road hierarchy diagram is produced clarifying the function of each road. The hierarchy	
diagram should include pedestrian and cycle routes. Partic ular attention is required to Eyles	
Street."	
The existing road network did not show clear paths of tra vel for vehicles, which resulted in some local roadsexceeding the Roads and Maritime environmental limits for daily traffic volumes.	Section 3.2.1
The document A Vision for Telopea, Background Report (Urbis, 2017) considers a more	
stuctured road hierarchy and clearly states the functionsof surrounding roads which would	
manage the impacts of the eventual uplift in traffic.	
"Further consideration be made of a road through Sturt Park bordering the school."	
Although not proposed in the Master Plan, there is potential fora new street to run through Sturt Park adjacent to the Telopea Public School eastem boundary which would be subject to further consideration by both Council and Department of Education forany future Telopea Public School master plan.	Section 3.2.2

1.5 References

In preparing this report, reference has been made to the following:

- an inspection of the site and its surrounds
- Telopea Renewal Project Transport Studies (Arup, 2010)
- Telopea Urban Renewal Project - Response to Submissions, (Arup 2010)
- Parramatta City Council Development Control Plan (DCP) 2011
- A Vision for Telopea Master Plan Report (Urbis, 2017)
- A Vision forTelopea Background Report (Urbis, 2017)
- traffic surveys undertaken by Austraffic Traffic Data as referenced in the context of this report
- other documents and data as referenced in this report.

2. Existing Transport Conditions

2.1 Road Network

As indic ated in Figure 1.1, the Telopea Master Plan a rea is loc ated south of Pennant Hills Road (Cumberland Highway). To its south is Kissing Point Road. Adderton Road, Evans Road and Sturt Street act ascollec tor routes allowing traffic originating from within Telopea Master Plan area to access the arterial road network. The speed limit on Pennant HillsRoad and Kissing Point Road near the study area is $60 \mathrm{~km} / \mathrm{h}$, the speed limit on the collector routes and loc al roads is $50 \mathrm{~km} / \mathrm{h}$. A summary of the adjoining road attributes is shown in Table 2.1.

Table 2.1: Selected Road Attributes

Road Name	Road Hierarchy Category	Caniageway Width (metres)	No. of Lanes (each direction)	Speed Limit (km/h)
Penna nt Hills Road (Cumberland Highway)	Arterial	13	2	60
Kissing Point Road		23	3	60
Adderton Road	Collector	10	1	50
Evans Road		10	1	50
Sturt Street		10	1	50

Figure 2.1 shows an image of Pennant Hills Road, while Figure 2.2 shows an image of Kissing Point Road.

Figure 2.1: Pennant Hills Road

Figure 2.2: Kissing Point Road

2.2 Intersection Capacity Assessment

2.2.1 Intersection Counts

Traffic movement counts were completed at the following key prionity-controlled intersections within the Telopea study area:

- Adderton Road/ Manson Street
- Sturt Street/ Manson Street
- Sturt Street/ Evans Road
- Shortland Street/ EvansRoad.

The counts were completed on Tuesday 15 March 2016 between 7am and 9am and between 4 pm and 6 pm . The AM and PM peak hour traffic volumes were found to be between 8am to $9 a m$ and $5 p m$ to $6 p m$ respectively and summarised in Figure 2.3 and Figure 2.4, with full results included in Appendix A.

Traffic movement counts were also undertaken for the following key extemal intersections that provide access to the Telopea Master Plan area:

- Pennant HillsRoad (Cumberland Highway)/ Adderton Road
- Pennant Hills Road (Cumberland Highway)/ Coleman Avenue
- Pennant Hills Road (Cumberland Highway)/ Evans Road
- Kissing Point Road/ Sturt Street
- Kissing Point Road/ Adderton Road.

The counts were completed on Thursday 23 J une 2016 between 7am and 9am and between 4 pm and 6 pm . The AM and PM peak hour traffic volumes were found to be between $7: 45 \mathrm{am}$ to 8:45am and $4: 45 \mathrm{pm}$ to $5: 45 \mathrm{pm}$ respec tively and summarised in Figure 2.5 and Figure 2.6, with full results included in Appendix A.

Figure 2.3: Existing Weekday AM Peak Hour Traffic Volumes - Intemal Intersections

16S1627000 // 27/04/17

Figure 2.4: Existing Weekday PM Peak Hour Traffic Volumes - Intemal Intersections

16S1627000 // 27/04/17

Figure 2.5: Existing Weekday AM Peak Hour Traffic Volumes - Extemal Intersections

Figure 2.6: Existing Weekday PM Peak Hour Traffic Volumes - Extemal Intersections

2.2.2 Intersection Operation

The operation of key intersections has been assessed using SIDRA INTERSEC TION, a computer based modelling package which calculates intersection performance.

The commonly used measure of intersection performance, as defined by the Roads and Maritime Servic es (Roads and Maritime), is vehicle delay. SIDRA INTERSEC TION determines the a verage delay that vehic les encounter and provides a measure of the level of service.

Table 2.2 shows the criteria that SIDRA INTERSECTION a dopts in a ssessing the level of service.
Table 2.2: SIDRA INTERSECTION Level of Service Criteria

Level of Senvice (LOS)	Average Delay per vehicle (seconds)	Traffic Signals, Roundabout	Give Way \& Stop Sign
A	Less than 14	Good operation	Good operation
B	15 to 28	Good with acceptable delays and spare capacity	Acceptable delays and spare capacity
C	29 to 42	Satisfactory	Satisfactory, but accident study required
D to 56	Nearcapacity	Near capa city, acc ident study required	
E	57 to 70	At capacity, at signals incidents will cause excessive delays	At capacity, requires other control mode
F	Greater than 70	Extra capacity required	Extreme delay, major treatment required

Existing Operating Conditions - Key Intemal Intersections

Table 2.3 presents a summary of the existing operation of the surveyed intemal intersections, all of which are un-signa lised, with full results presented in Appendix B of this report.

Table 2.3: Existing Operating Conditions- Intemal Intersections (un-signalised)

Intersection	Peak	Degree of Saturation (DOS) [1]	Average Delay (sec)	95th Percentile Queue (m)	Level of Senvice (LOS)
Adderton Road/ Manson Street	AM	0.36	18	9	B
	PM	0.40	17	11	C
Sturt Street/ Manson Street	AM	0.00	6	0	A
	PM	0.01	6	0	A
Evans Road/ Sturt Street	AM	0.40	5	15	A
	PM	0.21	6	6	A
EvansRoad/ Shortland Street	AM	0.27	11	8	B
	PM	0.14	6	4	A

[1] A measure of how much demand an intersection is experiencing compared to the total capacity. Also, known asthe volume/capacity ratio where $\mathrm{v} / \mathrm{c}>1.0$ represents oversaturated conditions.
Note: The worst performing tuming movement is taken to represent the operation of the overall intersection for un-signalised intersections.

Based on the above assessment, the key intersections within the Telopea Master Plan area operate satisfactorily. These existing conditions are exhibited considering Telopea is bounded by Pennant Hills Road to the north and Kissing Point Road to the south, both of which experience signific ant delays during the AM and the PM peak periods.

Site observations in the AM peak period confirm that queue lengths a re generally shorter than those shown in the SIDRA INTERSEC TION outputs. The surveyed intersections were found to operate at a satisfactory level of service with minimal queues and delays.

Existing Operating Conditions - Key Extemal Intersections

The Master Plan is likely to impact intersections outside of the Telopea study area. There are key extemal intersections which provide a link to the arterial roads Pennant Hills Road (Cumberland Highway) in the north and Kissing Point Road in the south.

Table 2.4 presents a summary of the existing operation of the surveyed extemal intersections, all of which are signa lised except for the Pennant Hills Road/ EvansRoad/ Lloyds Avenue priority controlled intersection. Full results are presented in Appendix C of this report.

Table 2.4: Existing Operating Conditions - Extemal Intersections

Intersection	Peak	Degree of Saturation (DOS) [1]	Average Delay (sec)	95th Percentile Queue (m)	Level of Senvice (LOS)
Pennant Hills Road (Cumberland Highway)/ Adderton Road	AM	1.2	26	318	B
	PM	0.99	22		B
Pennant Hills Road (Cumberland Highway)/ Coleman Avenue	AM	0.78	14	175	A
	PM	0.69	13	223	A
Pennant Hills Road (Cumberland Highway)/ Evans Road (un-signalised	AM	0.91	66	23	E
	PM	0.86	58	19	E
Kissing Point Road/ Sturt Street	AM	0.73	16	154	B
	PM	0.94	14	136	A
Kissing Point Road/ Adderton Road	AM	0.81	27	250	B
	PM	0.91	25	225	B

Based on the above assessment, overall the intersections are operating with acceptable delays except for the unsigna lised intersection of Pennant Hills Road/ Evans Road which is operating at capacity in both the AM and PM peaks. This is consistent with site observations.

Based on analysis a nd observations, there is a safety concem for right tum movements at the Evans Road intersection. Right tum movements were observed to be dependent on whether Pennant Hills Road through traffic stops and givesway, as well asgap acceptance by drivers. Vehicleswere observed to take dangerous/ insufficient gaps in traffic and would often queue across the westbound lane as shown in Figure 2.7. This was also a common behaviour for drivers exiting Evans Road and Loyds Avenue.

Factors such as the critical gap ${ }^{1}$ and minimum departures ${ }^{2}$ were adjusted for the Pennant Hills Road/ Evans Road/ Lloyds Avenue intersection to reflect the observed driver behaviour during the site visit. In addition to the above, during partic ularly congested periods on Pennant Hills Road, each through traffic vehicle would often give way to one left-tuming vehicle exiting from a local road before proceeding.

Figure 2.7: Unsafe Traffic Movement at the Pennant Hills Rd/ Evans Rd/ Loyds Av Intersection

Site observations indic ated some level of through traffic congestion at each key intersection along Kissing Point Road and Pennant Hills Road. However, except for the Pennant Hills Road/ Evans Road/ Loyds Avenue intersection, traffic which exited Telopea onto these roadslocal streets was not observed to experience any major delays.

2.3 Midblock Capacity Assessment

2.3.1 Environmental Capacity and Speed Performance Standa rds

The Guide to Traffic Generating Developments (Roads and Maritime, 2002) defines environmental limits for each road class, which are detailed in Table 2.5.

A further criterion specified by Roads and Maritime is that heavy vehicles should preferably not a mount to more than five percent of total traffic on local roads.

[^1]Table 2.5: Environmental Capacity and Speed Performance Standards

Road Class	Road Type	Maximum Speed $(\mathbf{k m} / \mathrm{h})[1]$	Max Peak hour volume (veh/hr)	Daily volume (veh/ day) $[2]$
Local	Access way	25	100	1,000
	Street	40	200 (desirable) and 300 (maximum)	2,000 (desirable) and 3,000 (maximum)
Collector	Street	50	300 (desirable) and 500 (maximum)	3,000 (desirable) and 5,000 (maximum)

[2] In existing areas, maximum speeds relate to $85^{\text {th }}$ percentile speeds.
[3] Traffic data obtained forthis study waslargely daily volumes. As such, the maximum peak hour volumes have been converted to daily volume by assuming a peak to daily ratio of 10percent.
Source: Guide to Traffic Generating Developments (Roads and Maritime, 2002)
The standardsare based on Roads and Maritime research relating to safety (pedestrians' ability to cross, visibility and delay) a nd amenity (noise and air qua lity) on residential roads. These standards were developed to assist practitioners in the design of residential subdivisions, to ensure an appropriate level of safety and a menity is maintained when designing these types of roads.
In practice, if these standards or limits are met, it is reasonable to a ssume that the street can be crossed safely and with minimal delay, and that the traffic noise and air quality levels would be acceptable.

In addition to the above target maximum speeds (25 to $50 \mathrm{~km} / \mathrm{h}$), as a general guide, all local roads have a $50 \mathrm{~km} / \mathrm{h}$ speed limit unless designated otherwise.

2.3.2 Traffic and Speed Assessment

Midblock 24-hour counts and speed checks were completed on key roads within the Telopea study a rea to determine the existing mid-block traffic volumes and speeds at key locations.

The roads with traffic volumes, heavy vehicle percentage and speeds that exceeded the environmental capacity and speed performance are highlighted in red in Table 2.6.

Table 2.6: Evaluation of Environmental Capacity \& Speed Performance

Street Name	Section	Surveyed			Functional Classification	Assessment Against Roadsand MaritimeEnvironmental Performance		
							$\begin{aligned} & \text { ס} \\ & \text { oे } \end{aligned}$	
Adderton Road	Between Manson Street \& Kissing Point Road	13,222	$56{ }^{[2]}$	2.4	Collector	No	No	Yes
Evans Road	Between Brand Street \& YatesAvenue	6,587	$51^{[2]}$	4.3	Collector	No	No	Yes
Marshall Road	Between Howard Street \& Brand Street	958	$53{ }^{[2]}$	7.3	Local	Yes	No	No
Sturt Street	Between Evans Road \& Holland Place	7,612	45	4.3	Collector	No	Yes	Yes

[1] The ' $85^{\text {th }}$ percentile speed' is a key statistic used in traffic planning and analysis. It represents the speed at or below which 85 percent of a ll vehicular traffic are observed to travel underfree-flowing conditions (or 15 percent would exceed it). Based on research, vehiclestraveling between the 50th and 90th percentile of speed have been found to have the lowest risk of crashing due to speed. For safety reasons, the speed limit istypic ally set at or below the $85^{\text {th }}$ percentile speed.
[2] The surveyed roads have posted speed limits of $50 \mathrm{~km} / \mathrm{h}$. The $85^{\text {th }}$ percentile speeds at these locations exceed the signposted limits.
The preference is no more than five percent of total traffic on local roads (referto Section 4.1).
The results indic ate the following observations in relation to the environmental capacity and speed performance of local roads:

- Existing daily traffic volumes along Evans Road and Sturt Street, which function as collector roads within the Telopea study area, exceed the maximum limit (5,000 vehic les perday) by up to 50 percent.
- Existing daily traffic volumes along Adderton Road, which also functions as a collector road through Telopea, exceed the maximum limit by 165 percent. From both a connectivity and traffic volume perspective, Adderton Road has a higher order function.
- The $85^{\text {th }}$ percentile speed exceeds the $50 \mathrm{~km} / \mathrm{h}$ speed limit on Adderton Road, Evans Road and Marshall Street.
- The proportion of heavy vehicles to total traffic on Marshall Road exceeds the preferred maximum of five percent of total traffic. However, this is ma inly due to Marshall Road being a designated bus route rather than a heavy vehicle route through Telopea, as well asconstruction traffic from nearby developments.

The observations from the mid-block traffic flows against desirable Roads and Maritime environmental limits for loc al roads indic ate that the Telopea road network tends to function as short-c uts between Kissing Point Road and Pennant Hills Road. Traffic calming mea sures to discourage through traffic through local roads would need to be considered. The key collector roadscamy higher volumesthan the desira ble environmental limits. The implic ation for the Master Plan I is to reinforce a road hierarchy that through traffic is diverted away from local streets, which are also expected to generate higher levels of activity with the Master Plan.

It is noted that a broader transport study is being undertaken for the Telopea Precinct proposal.

GTAconsultants

2.4 Traffic Safety

Recorded road crash history was provided by Roads and Maritime for a five-year period (J anuary 2010 to December 2014) within the Telopea Master Plan area. The data was analysed to identify any potential road safety defic iencies within the Master Plan area, particularly pedestrian-related incidents. Figure 2.8 shows a visualisation of the crash data categorised as pedestrian crashes, vehic le crashes resulting in injuries and non-c asualty vehicle crashes (tow-away). There were no fatalities recorded within the study a rea over the five-year period (2010-2014).

Figure 2.8: Recorded Road Crash History

Data source: Roads and Maritime Services
Of the seven pedestrian-related crashesoccurred along Shortland Street, Evans Road and Sturt Street, four crashes occured at T-intersections, whilst the remaining three occurred mid-block (two-way undivided road). One pedestrian crash occurred along Adderton Road adjacent to Telopea Railway Station. A summary of the pedestrian crashes are as follows ${ }^{3}$:

- fourcrashesinvolved vehiclescolliding with pedestrianscrossing from the nearside (kerbside)
- two crashes involved vehic les colliding with pedestrians playing, working, lying or standing on the camiageway
- one crash involved a vehicle colliding with a pedestrian crossing from the farside.

Further analysis of the crash statistics indic ates that the pedestrian crashes most often occurred near busy pedestrian areas such as busstops, shops, schools, the skate park and the church.

Another observation made during the site visit was the effect of on-street parking along bus routes in the study area, partic ularly Marshall Road, Shortland Street and Sturt Street. These site observations indicate that the combination of parked cars on either side of the road at certain sections a nd the existing road width is not suffic ient for two opposing vehic les to pass each other safely. Vehic les would usually have to give-way in the event of insufficient road width to allow for

[^2]safe passage. In addition, roadssuch as Marshall Road, Shortla nd Street and Sturt Street are designated bus routes which experience busesfrequently stopping and slowing down traffic.

In seeking to reduce through traffic, consideration should also be given to the impacts of local area traffic management measures would have on busoperations.

The narrow road widths and bus routes along Marshall Road are expected to discourage additional through traffic using this road. The existing layout and function of the road is considered sufficient to discourage major increases in through traffic.

2.5 CarParking

2.5.1 Existing Parking Conditions

Parking within the Telopea Master Plan a rea predominantly comprises unrestric ted kerbside parking along most roads, with the following exceptions:

- six one-hourtime restricted parking spacesalong Adderton Road adjacent to Telopea Railway Station between 8:30am to 6 pm Monday to Friday and 8:30am to 12:30pm on Saturdays
- 39 one-hour time restricted parking spaces, 18 two-hour time restricted parking spaces, two accessible parking spaces and two taxi drop off/ set down spaces within Benaud Place, Waratah Shopping Centre
- "No Parking" restrictions a long Sturt Street opposite Telopea Public School and Marshall Road nearthe Shortland Street intersection
- Several accessible parking spaceslocated on Polding Place nearthe cul-de-sac.
- Resident-only parking lots for apartment blocks.

The a mount of unrestricted kerbside parking spaces within the Telopea Master Plan area allows for suffic ient visitor parking during peak parking periods observed. Surround ing loc al streets have a reasonably low demand, except nearTelopea Public School, Waratah shops and parking close to Telopea Railway Station.

Parking within 100 metres of the station is full by about 7:30am, which is due to residents using these spaces for non-commuting purposes, as shown in Figure 2.9. Parking near the station could benefit with the introduction of parking restrictions, although there is suffic ient unrestric ted kerbside parking availa ble within the local streets beyond 100 metres from the station.

Figure 2.9: Parking Situation at Telopea Railway Station, AM Peak

Informal kiss and ride activities were observed along Shortland Street adjacent to a 'No Stopping' zone at the railway station.

2.6 Existing Demographics a nd Travel Characteristics

2.6.1 2011 J oumey to Work Data - Telopea Study Area

The Joumey to Work (J TW) data published by the Bureau of Transport Statistic s ${ }^{4}$ (BTS) from 2011 Census data by the Australian Bureau of Statistic s provides the most robust picture of travel pattemsto/ from the Telopea Master Plan area.

The smallest geographical area for which JTW data is available is a Travel Zone (TZ. J TW data was analysed for the Telopea Master Plan area catchment ${ }^{5}$, to better understand the current travel pattems for people who live and work in the area.

Figure 2.10 shows the selected catchment of the Telopea MasterPlan a rea represented as a Travel Zone (TZ1131).

[^3]Figure 2.10: Telopea Master Plan Area Travel Zone

Data source: Bureau of Transport Statistics, http://visual.bts.nsw.gov.au/jtwbasic/\#1131, accessed 14 March 2016

2.6.2 Travel from the Telopea Master Plan Area

The 2011 J TW data indicates that a total of 2,987 people live in the selected Travel Zone. Out of the 2,987 residents, there are a total number of 1,131 people who work.

Travel Modes from Telopea
Figure 2.11 indic ates 73 percent of working residents in the selected Travel Zone travel to work by carasthe driver (68 per cent) or a passenger (five percent). Public transport modes such as train (16 per cent) or bus (seven percent) make up 23 percent of total commutertravel modes.

Figure 2.11: JTW Travel Modes by Residents from Selected TZ

Data source: Bureau of Transport Statistics, http://visual.bts.nsw.gov.au/ttwbasic/\#1131, accessed 14 March 2016

Travel Destinations from Telopea

The BTS data also providesthe destination areasfor these workerstravelling from the selected Travel Zone, as shown in Figure 2.12. Of these, the Sydney CBD (16per cent), Carlingford (15 per cent), Ryde (14 percent) and Parramatta (10 per cent) are the most popular destina tions, with a minority travelling to suburbs including Aubum, Chatswood, Strathfield, Burwood, North Sydney and Baulkham Hills. It is noted that 265 residents work in other destinations not listed below to other minor destinations, namely Baulkham Hills (29), Pennant Hills - Epping (26), Bankstown (20), Memylands - Guildford (17) and Wa mingah (16).

Figure 2.12: Top Destination Areas for Workers Commuting from Telopea

Data source: Bureau of Transport Statistics, http://visual.bts.nsw.gov.au/itwbasic/\#1131, accessed 14 March 2016

2.6.3 Travel to the Telopea Study Area

The BTS 2011J TW data indicates that a total of 260 people work within the selected Travel Zone.

Travel Modesto Telopea

Figure 2.13 shows the distribution of travel modes by the workers employed in the Travel Zone selected in Figure 2.10, which indic ates that approximately 84 per cent of workers tra vel to Telopea by private vehic le to work as a driver or passenger, with only about six per cent travelling via train or bus. It is also noted that seven percent of workers prefer to walk to work, most likely residents.

Figure 2.13: JTW Travel Modes by Workers to the Selected TZ

Data source: Bureau of Transport Statistics, http://visual.bts.nsw.gov.au/itwbasic/\#1131, accessed 14 March 2016

Travel Origins to Telopea

Figure 2.14 represents the top origins of the 260 workers travelling to the selected Travel Zones in Telopea. These areas consist ma inly within the neighbouring Carlingford area, with 105 out of the 232 workers (45 per cent) originating from here. Baulkham Hills, Merrylands, Parramatta and Fairfield also indic ate a signific ant number of origins.

Figure 2.14: Top Origin Areas for Workers Commuting to Telopea

Data source: Bureau of Transport Statistics, http://visual.bts.nsw.gov.au/jtwbasic/\#1131, accessed 14 March 2016

2.7 Public Transport

Public transport services in the Master Plan area is provided by the Carlingford Line operated by Sydney Trains, and bus servic es operated by Sydney Buses.

2.7.1 Train Servic es

Telopea Railway Station is located on Sturt Street along the westem boundary of the Master Plan area. It is a lso ac cessible from Adderton Road opposite Telopea Street.

There are limited train services on the Carlingford Line, serving as a shuttle line between Carlingford Railway Station and Clyde Railway Station, where interchange to othertrain lines is a vailable.

Services at Telopea Railway Station to Clyde during the AM peak is about every 30 minutes, reducing to an hourly service outside the peak periods. Due to the infrequent services, patronage on the train is low.

The following train station ba mier counts at Telopea Railway Station are available from BTS based on 2014 data:

- AM peak (6:00-9:30am) - $260 \mathrm{in} / 30$ out
- PM peak (3:00-6:30pm) - $20 \mathrm{in} / 130$ out
- 24-hour period - $340 \mathrm{in} / 340$ out.

2.7.2 Bus services

Sydney Buses operatestwo routes through Telopea, as indicated in Table 2.7. Figure 2.15 shows the bus network map near Telopea.

Table 2.7: Bus Services through Telopea

Route \#	Route Description	Peak Headways (Frequency)	Off Peak Headways (Frequency)
545	Pa rramatta to Chatswood	10 minutes	15 minutes
513	Meadowbank Wharf to Carlingford	30 minutes	1 hour

Busesoperate along Marshall Road, Shortland Street and Sturt Street, connecting with Pennant Hills Road in the north and Kissing Point Road in the south. Telopea Railway Station is servic ed by the Parramatta to Chatswood (Route 545) service primarily using Kissing Point Road.

Figure 2.15: Bus Transport Network

Source: Sydney Buses - Westem Region Guide

2.8 Active Tra nsport

2.8.1 Cycling

Pa ramatta City Council released the Parramatta Bike Plan in 2009, indicating the following upgrades near the Telopea Master Plan area:

- off-road cycleway parallel to Adderton Road from Field Place to Pennant HillsRoad
- off-road cycleway from Telopea Station to Carlingford Station via an existing comidor linking with an existing route
- off-road cycleway between Tiptrees Avenue and Coleman Avenue along Pennant Hills Road.

A map of the Parramatta Bike Plan (2009) with respect to Telopea is shown in Figure 2.16.

Figure 2.16: Telopea Master Plan Area within the Parramatta Bike Plan (2009)

Source: Parramatta Bike Plan
Currently, the Telopea Master Plan area has on-road cycling facilities on local streets including Shortla nd Street and Evans Road, allowing connectionsto key destinations including Telopea Railway Station, schools a nd surrounding suburbs. Proposed cycling links include an off-road facility a long the railway coridor connecting to Pennant Hills Road in the north and an on-road facility a long Leamington Road/ Adderton Road to Kissing Point Road in the south. The current cycling network near the study area is illustrated in Figure 2.17.

GTAConsultants.

Figure 2.17: Cycling Network

Source: Westmead and Parramatta Bicycle Route Map

2.8.2 Walking

There are limited pedestrian footpaths in the area, resulting in poor pedestrian connectivity. Site observations indicate pedestrians frequently walked within the road cariageway along local streets as no footpaths are provided. These were observed on Wade Street, Eyles Street, The Parade, Fig Tree Avenue, Holland Place and Polding Place.

During the moming site visit, pedestrians were observed to cross the rail comidor from the west side of the station via a pedestrian level crossing to access the bus services along Shortland Street on the eastem side of the station. The pedestrian desire lines are shown in Figure 2.18.

Figure 2.18: Telopea Railway Station Pedestrian Desire Lines- AM Peak Period

Basemap source: Google Maps, accessed 11 March 2016
There are currently no formal pedestrian facilities to cross Shortland Street and vehic les were observed to mainta in their speed a round this area even with inc reased pedestrian activity.

Despite this, the Roads and Maritime crash data from Figure 2.8 indicatesthat there have been no crashes here within the past five-year period.

Pedestrian and vehicle conflic ts were observed along Shortland Street near Evans Road. There are no formal pedestrian crossing facilities provided at this loc ation. Bus patronscrossing from/ to the bus facilities a long Shortland Street would often conflict with oncoming vehic les, most notably vehic les exiting Benaud Place (from the shops). This pedestrian behaviour is indic ated in Figure 2.19.

The crash data indicates there have been four pedestrian crashes at this intersection and the surrounding busstops, generally due to pedestrianscrossing the road from the nearside of a vehicle to the kerb/ road shoulder asshown in Figure 2.20 (referto Figure 2.8 forlegend).

Figure 2.19: Pedestrian/ Vehicle Conflicts

Basemap source: Google Maps viewed 11 March 2016.

GTAconsultants

Figure 2.20: Incidents near the Evans Road and Shortland Street Intersection

The Telopea Master Plan area slopes downwards from Telopea Railway Station towards the creek line near Evans Street in the southeast due to a ridgeline generally running in a north-south direction.

The Telopea Master Plan a rea topography creates a diffic ult walking environment around Telopea with long walking distances between key destinations. The walking distance between the Waratah Shopping Centre and Telopea Railway Station is about 400 metres, with steep grades a long Shortland Street and Sturt Street.

A signalised pedestrian crossing is provided along Adderton Road near Telopea Railway Station. Most pedestrians were observed to cross at this facility without waiting for the pedestrian signal to tum green. The crash data analysed indicatesthere has only been one pedestrian crash at the Adderton Road signalised crossing nearTelopea Station in the last five-year period due to a pedestrian crossing from the near side.

Raised markings are generally provided in high pedestrian activity areas such as Telopea Public School and Waratah Shopping Centre.

2.8.3 School Activities

Telopea Public School is a small community school located in the southem end of the Telopea Master Plan a rea, bound by Sturt Street, Chestnut Avenue and Manson Street. Based on the School Plan 2015-2017, the school only operated three classes in 2015; a combined Kindergarten/ Year 1 class, a Year 2, 3 and 4 class and a Year 5 and 6 class. Traffic generated by the school during the AM school peak period ($8-9: 30 \mathrm{am}$) was observed to cause minimal congestion during the site visit.

GTAConsultants.

School drop-off activity was observed along Chestnut Avenue in a No Parking zone (8-9:30am and $2: 30-4 \mathrm{pm}$ school days) near the school entrance. There were only two vehic lesobserved to drop off school children at a ny one time. School children were also dropped off along Sturt Street, west of Manson Street and used the pedestrian refuge on Manson Street to safely cross the road. Drop-off activities were also observed in Benaud Place, with the raised pedestrian crossing facility on Sturt Street providing a safe crossing point for students.

A small portion of students a rived via buses servicing the bus stop on Sturt Street adjacent to the Dundas Branch Library. Students and/ or parents were observed to cross Sturt Street via the pedestrian refuge provided nearthe busstop.

Overall, the traffic, pedestrians and parking conditions around the school during the peak AM school period wasobserved to have minimal delayscaused by the school activity.

Students and parents were observed to appropriately use the pedestrian facilities around the school. The existing pick-up and drop facilities servicing the school are expected to be maintained.

2.8.4 Pedestria ns

Site Topography

The topography in the main centre of Telopea can be considered steep in relation to pedestrian a menity.

The slope (around 1 in 10) towardsthe creek near Evans Street in the south-east with the higher ground being the railway line makes walking towards Telopea Station from the east diffic ult. There are relatively long distances between key destinations such as the Waratah Shopping Centre and Telopea Station.

Redevelopment in the town centre would need to consider not only pedestrian desire lines to key trip attractors, but also the topography that would be encountered along those desire lines and how building form in combination with the public domain can best address this challenge.

3. Master Plan

3.1 Land Uses

The Master Plan includes the construction of residential, including a mix of private, affordable a nd social housing, a retail centre and community uses, with the indic ative a reas summarised in Ta ble 3.1.

Table 3.1: Indicative Land Uses

Use	No. of Apartments/ Area
Residential	Between $3,500-4,500$ mixed residential dwellings
Retail	$7,000 \mathrm{~m}^{2}$ (including a $3,000-4,000 \mathrm{~m}^{2}$ supermarket)
Community	$3,000 \mathrm{~m}^{2}$ (approx.)

The core area opposite the light rail stop will consist of high-density buildings and retail services, providing a clear urban structure around the light rail stop. Medium to low density uses are proposed outside of the core, with densities and building heights dec reasing as development moves outwards from the core area and light rail stop.

The community centre would facilitate a new neighbourhood centre and a new branch library to replace the existing Dundas Area Neighbourhood Centre.

In addition to the above land uses, public spaces such as parks, reserves and a new a mival plaza at the light rail stop is proposed throughout the Telopea Master Plan.

A land use strategy map showing the proposed land uses within the Telopea MasterPlan area is shown in Figure 3.1.

GTAConsultants

Figure 3.1: Land Use Strategy Map

Source: A Vision for Telopea Master Plan Report, Urbis 2017

3.2 Site Layout and Access

3.2.1 Road Hierarchy

The design is permeable for both north-south and east-west movements, with the proposed site layout shown in Figure 3.1. From the regional road network, the site is accessed via Pennant Hills Road to the north and Kissing Point Road to the south. Adderton Road, Evans Road, Marshall Road and Sturt Street are collector roads which intersect with the regional road network providing access to the site. The proposed road hierarchy and mixture of traffic calming measures will limit the a mount of through-traffic movement passing the site.

The document A Vision forTelopea, Background Report (Urbis, 2017) considers a more structured road hierarchy which clearly states the functions of surrounding roads which would manage the impacts of the eventual uplift in tra ffic.

The road hierarchy diagram is pictured in Figure 3.2 and summarised in Table 3.2.

Figure 3.2: Telopea Road Hierarchy Plan

[^4]GTAconsultants.

Table 3.2: Road Hierarchy Summary

Hierarchy	Role and Function	Streets
Sub Arterial Road	- Provide regional traffic and public transport connections	- Kissing Point Road - Pennant Hills Road
Collector Roads	- Provide the main connections between subarterial roads, in the case of Telopea provide the key links between Kissing Point Road and Pennant Hills Road - Ability to accommodate local bus movements - Traffic movement and safety will be prioritised over on-street parking	- Adderton Road - EvansRoad - Sturt Street - Shortland Avenue - Marshall Road - Manson Street
Local Roads	- Predominantly to be used for local traffic, with slow vehicular traffic with on-street parking and pedestrian amenities	- All streets that a re not collector orsub-arterial
Minor Connectors	- Predominantly thoroughfares that prioritises pedestrian movements, may be a pedestrian street and/or shared street	- Eyles Street extension - east of Benaud Lane - Eyles Street extension - west of Wade Street

Source: A Vision for Telopea Background Report, Urbis 2017

3.2.2 New Connections

The Master Plan seeks to provide new connections to increase site permeability to assist with the expected increase vehicle, cycling and pedestrian movements as follows:

- A new road crossing over the rail line linking Adderton Road and Sturt Street, providing an altemative crossing option from the existing na rrow Manson Street c rossing. This new crossing will improve the movements of vehicles across the light rail comidor for traffic travelling east-west through the core area.
- Relocation of Wade Street to link Manson Street and Marshall Road to improve the north-south movement and permeability through the core area, although traffic calming measures will be used to discourage through traffic.
- Benaud Lane upgraded to create verge with footpaths and landscape area to improve permeability through the core area, but will also use traffic calming measures to discourage through traffic .
- Eyles Street may also be extended to link EvansRoad and the light rail stops. However, this extension is more likely to be delivered as a pedestrian link in full and not provide a complete road/ traffic connection.

In addition to the above, a new road connecting Sturt Street to Chestnut Avenue parallel to the eastem boundary of Telopea Public School is to be considered by Council and Department of Education for any future master plan for the school.

The addition of this link would create an opportunity for a 'kiss a nd ride' facility servic ing the sc hool. This would also improve access to the residential a reas south of Sturt Street and inc rease the general area permeability.

4. Car Parking

4.1 Off-Street Car Parking Requirements

The off-street car parking provision requirements for different development types are set out in City of Pa rramatta Counc il's Development Control Plan (DCP 2011). Social and affordable housing land usescan use rates asperthe State Environmental Planning Polic y (SEPP) Affordable Rental Housing 2009.

A review of the car parking requirements for proposed developments within the Telopea Master Plan area is summa rised in Table 4.1.

Table 4.1: DCP and SEPP Parking Requirements

DCP/ SEPP Land Use	Minimum Parking Rate	Reference
Dwelling houses and dual occupancies	1 space fordwellingsless than or equal to $125 \mathrm{~m}^{2}$ 2 pacesfordwellings equal to or greaterthan $125 \mathrm{~m}^{2}$	City of Parramatta Council DCP 2011
Residential flat buildings	1 space per 1 or 2-bedroom unit 1.2 spacesper 3-bedroom unit 2 spaces per 4-bedroom unit 0.25 spaces perdwelling for visitor parking (carwash bay may also be a visitor space)	City of Parramatta Council DCP 2011
Business and Office	1 space per $50 \mathrm{~m}^{2}$ GFA 1 loading bay per 400m² GFA	City of Parramatta Council DCP 2011
Retail	1 space per $30 \mathrm{~m}^{2}$ GFA 1 loading bay per $400 \mathrm{~m}^{2}$ GFA	City of Parramatta Council DCP 2011
New affordable housing/ social housing	0.4 spacesper 1 bedroom unit 0.5 spaces per 2-bedroom unit 1 space per 3 or more-bedroom unit	SEPP Affordable Rental Housing 2009

4.2 Off-Street Recommended Parking Rates

A key redevelopment objective of the Master Plan is to encourage the use of public transportation and reduce reliance on private cars. There is potential for balanced parking provisions in lieu of planned transport infrastructure development (i.e. the Pa rramatta Light Rail) within the vicinity of the site to ensure effective use of public transportation and ease parking congestion within the area.

It is recommended that Council consider amending the existing parking rates in Telopea to respond to future demand and encourage the use of the future Parramatta Light Rail. The recommended rates are included in Table 4.2 below and allow for reduced parking in areas within 400 metres walking distance from the light rail stop as shown in Figure 4.1.

Figure 4.1: Light Rail Stop $\mathbf{4 0 0}$ metre Catchment

Table 4.2: Recommended Telopea Local Area Parking Rates

Development Type		Area 1	Area 2
Residential Flat Buildings	1 bed	0.6 per unit	1 per unit
	2 bed	0.9 per unit	1.25 perunit
	3+bed	1.4 perunit	1.5 per unit
	Visitor	1 per 10 unit	1 per 7 units
Retail	Supermarket	1 space per $25 \mathrm{~m}^{2} \mathrm{GLFA}$ [3]	
	Specialty	1 space per $25 \mathrm{~m}^{2} \mathrm{GLFA}$	
Commercial (including Medical and Professional Consulting uses)		1 space per $40 \mathrm{~m}^{2} \mathrm{GLFA}$	
Community		Assessed on ments, will take in to account integration of retail/ community usesand ability to share carparking asit would facilitate multi-stop facilities	
CarShare Spaces		A minimum of 1 space is to be allocated to carshare for developments with 50 or more dwellings. If a greement with a carshare provider is not obtained, then the car share space is to be used for addition visitor parking until such time a carshare provider agreement is obtained.	

[3] Grossleasable floorarea

The retail rates in Table 4.2 are lowerthan Council and Roads and Maritime rates as they adopt an integrated a pproach to retail shopping activities. The shops are centrally located within a predominantly local retail catchment and the lowerparking rates will encourage walking to the shops, commuters shopping on their way home throughout the week, and acknowledges the
proposed densities with immediate vicinity (around 200 metres) of the new shops. These rates are consistent with other recent renewal precincts, including Carter Street, Homebush.

4.3 Bicycle Parking

DCP 2011 sets out requirements for bic ycle parking which must be provided in an undercover safe a secure bicycle parking facility with rates set out in Table 4.3 below.

Table 4.3: DCP Bicycle Parking Requirements

Land Use	DCP Bicycle Parking Rate
Residential flat buildings	1 space per 2 dwellings
Business premises, office premises, retail and industrial developments	1 space per $200 \mathrm{~m}^{2}$ GFA

End-of-trip facilities (showers, lockers, change rooms, etc.) must be provided for business premises, office premises and retail developments.

4.4 On-street Pa rking Provisions

There are currently concems regarding on-street parking at certain locations within the study area. Existing on-street parking is a vailable on both sides of the road throughout most intemal roads which reduces the two-way traffic camiageway widths and has been observed to be an issue particularly along bus routes such as Marshall Road, Evans Road and Sturt Street.

To reflect high-density residential volumes and mainta in appropriate bus access, it is recommended on-street parking restrictionsare introduced based on the following cariageway widths (with potential exceptions for minor streets and school frontages):

- lessthan eight metres-no on-street parking to be provided
- between eight to 10.5 metres - parking on one side only
- more tha 10.5 metres - parking allowable on both sides.

It is recommended that the on-street parking strategy applies to all roads initially where redevelopment is proposed, with exceptionsmade for low volume and/orterminating roads following specific assessment (including sight lines and passing opportunities).

It is noted activities associated with the local Church along Manson Street has been observed to cause on-street parking on Adderton Road, Winter Street and Manson Street to reach capacity on weekends. These impacts could be reviewed by Council to determine an appropriate outcome for the Church and the community.

5. Susta inable Transport Infra struc ture

5.1 Walking and Cycling Network

The Master Plan access and movement strategy indic ates the provision of better pedestrian and cycling connectionsthroughout the neighbourhood and the existing surrounding cycling network as a key development principle.

The precinct will be integrated with the City of Parramatta cycling strategy to provide key cycling links and facilities including the Greenway Comidor to service the precinct. Cycleways are proposed to connect with the Light Rail stop and the local area.

Pedestrian connections and footpaths will be provided as new development occurs.

5.2 Public Transport

5.2.1 Parramatta Light Rail

A preferred light rail network for Parramatta was recently announced by the NSW Govemment, following studies undertaken to investigate opportunities to support the creation of new communities, employment opportunities and encourage urban growth ac ross the Greater Pa rramatta to Olympic Peninsula Priority Growth Area.

Stage 1 of the network announced by the Govemment will include:

- a core spine linking precincts within Greater Pa rramatta including Westmead health precinct, Pa ramatta CBD and Camellia
- the replacement of the existing heavy rail service between Camellia and Carlingford with a more frequent light rail service.

Figure 5.1 shows the indic ative alignment of the Pa rramatta Light Rail Stage 1 announced in February 2017.

Figure 5.1: Indic ative Alignment of the Parramatta Light Rail Stage 1 Network

Source: Transport for NSW - Pa ramatta Light Rail prefered network
Given the reasonably low demand for heavy rail, the conversion of Telopea Rail Station to light rail could be of signific ant benefit to the local area. The proposed Paramatta Light Rail will provide enhanced public transport service to Telopea, in tems of potential for more frequent services during peaks and throughout the day. The proposed Pa ramatta Light Rail will a lso provide Telopea with direct links to key destinations in the surrounding region, including Pa rramatta, Westmead, Strathfield and Sydney Olympic Park, thereby inc reasing its ac cessibility. However, the same level of accessibility could also bring about negative impacts to the study area such as higher demand for all-day commuter parking from extemal generators.

5.3 Promotion of Susta ina ble Tra nsp ort

5.3.1 Light Rail Tra nsportation Hub

A light rail precinct which includes both the light rail stop and adjoining plaza will be the key public transportation node servicing Telopea. This public space will be complimented with cycling end-of-trip facilities, taxi ranks and a businterchange and create a welcoming environment for both residents a nd visitors through detailed a rchitec ture.

5.3.2 Green Travel Plan

A Green Travel Plan is a way in which a development can manage the transport needs of residents and visitors. The aim of the plan is to reduce the environmental impact of travel to and from a given site and in association with its operation. The plan encourages more efficient use of motor vehic les as well as altematives to single occupant car usage.

5.3.3 Reduction in Private Vehicle Usage

Encouraging the use of public transport and walking a nd cycling as modes of transport is central to reducing motor vehicle usage. With the addition of the light rail transportation hub, the site will be easily accessible by public transport.

The Master Plan is a prime opportunity to promote this vision by encouraging the use of public transport, cycling, and walking and not encouraging an abundance of carparking within this area and in tum, an over use and unnec essary use of private vehic les. The intemal movement and access network should reinforce this complimented with high quality wayfinding.

6. Traffic Impact Assessment

6.1 Traffic Generation

Traffic generation estimates for the residential la nd uses have been based on information on trip rates sourced from the Guide to Traffic Generating Developments (Roads and Maritime, 2002). ${ }^{6}$

This study takes a conservative approach and assumesthe following with respect to traffic generation:

- medium density build ings (3-6 storeys) follow the rate for three-bedroom units
- high density buildings (six storeys or more) follow the rate for metropolitan sub-regional centres
- retail traffic generation hasbeen based on 6.7 vehic les per 100 square metres of GFA for retail land uses between 0 to 10,000 square metres of GFA, this is the Roads and Maritime rate based on a typic al Friday night.

To represent expected retail activity, discounted AM and PM peak hour traffic generation rates for the retail land uses have been adopted based on the following:

- 25 percent of tripsare from the surrounding local residential developments within the study area (intemal/ linked trips already accounted for within residential traffic generation)
- 25 percent of people will prefer to walk to the shops
- 50 percent of trips are to/ from extemal sources (including linked trips).

The assumptions used to estimate the traffic generation of the proposal are based on yield estimates provided by Urbis and LaHC. These are outlined in Table 6.1.

Table 6.1: Traffic Generation Estimates

Land Use	No. of Additional Dwellings/ Units	Weekday Peak Hour Generation Rate (trips)	Traffic Generation Estimates (trips/ peak hour)
Medium Density Residential (three or more bedrooms)	725	0.65 perdwelling	471
High Density Residential (Metropolitan Sub-Regional Centres)	3,775	0.29 per unit	1,095
		Total residential trips	1,566
Land Use	G FA ($\mathbf{m}^{\mathbf{2}}$)	Discounted Weekday Peak Hour Generation Rate (trips)	Traffic Generation Estimates (trips/ peak hour)
Retail - AM	7,000 ${ }^{7}$	1.75/ $100 \mathrm{~m}^{2}$	123
Retail - PM		3.5/ $100 \mathrm{~m}^{2}$	245
		AM peak total trips	1,689
		PM peak total trips	1,811

Source: Information provided by Urbis and LaHC

[^5]In combination, the development is expected to generate a maximum of 1,689 a nd 1,811 trips during the AM and the PM peak hours, respectively.

A detailed assessment of the traffic impacts on key intemal intersections in the Master Plan area was undertaken for the proposed development yields and based on traffic generation perblock and associated distribution. This assessment, disc ussed in Section 6.3.1 and Section 6.3.2 and detailed in Appendix B, also included some minor additional traffic (in the order of five percent) which would account for any loc al circulation, va riations in traffic generation/ distribution or simila r and provides a robust assessment of intemal intersec tion treatments.

6.2 Distribution and Assignment

Development traffic is expected to access the Master Plan area via four main access/ egress points:

- Pennant HillsRoad/ Adderton Road (to the northwest)
- Pennant HillsRoad/ Coleman Avenue (to the north)
- Pennant HillsRoad/ Evans Road (to the northeast)
- Kissing Point Road/ Adderton Road (to the southwest)
- Kissing Point Road/ Sturt Street (to the southeast).

The distribution and assignment of traffic generated by the proposed development has been assessed using the following assumptions:

- work-related traffic followscurent joumey-to-work (J TW) travel pattems
- retail/ leisure-related traffic has been equally allocated throughout all access/ egress points in consideration of the road network and accessconfiguration.

The distribution of JTW tra vel pattems for work-related trips in the Telopea Master Plan area across the four-main access/ egress points is shown in Figure 6.1.

GTAConsultants.

Figure 6.1: Telopea Master Plan Area Work-Related Travel Pattems

Data source: Bureau of Transport Statistics, http://visual.bts.nsw.gov.au/jtwdynamic/, accessed 10 J une 2016
The retail development proposed as part of the proposal would likely attract extemal trips from the surrounding areas. Traffic distribution has been assumed to be equally distributed a cross all main access/ egress points (25 percent in each direction) as the study area is surrounded by residential development.

In addition, the directional split of traffic during peak hours (i.e. the ratio between the inbound and outbound traffic movements) has been estimated based on pattems at similar developments and taken as the following:

- residential AM peak hour: 20 percent inbound, 80 percent outbound
- residential PM peak hour. 80 per cent inbound, 20 percent outbound
- retail AM peak hour: 80 percent inbound, 20 percent outbound (workers travelling to work and minimal retail a ctivity in the moming)
- retail PM peak hour: 50 percent inbound, 50 percent outbound.

6.3 Traffic Impacts

6.3.1 Intemal Intersections - Operating Conditions

Table 6.2 presents the results of the intersection assessment for the key intemal intersections within the study area. It demonstrates that under existing layout a rangements, these key intemal intersections would not satisfactorily a c commodate the forecasted peak hour traffic generation.

Full results of the intemal intersections a ssessment are presented in Appendix B.

Table 6.2: Intemal Intersections - Performance with Development Traffic and Existing Layouts

Intersection	Peak	Degree of Saturation (DOS)	Average Delay (sec)	95th Percentile Queue (m)	Level of Service (LOS) with Development Traffic
Adderton Road/ Manson Street	AM	1.00	80	145	F
	PM	1.30	373	277	F
Sturt Street/ Manson Street	AM	1.19	192	540	F
	PM	0.60	14	29	B
Evans Road/ Sturt Street	AM	1.94	923	1,694	F
	PM	1.40	415	704	F
EvansRoad/ Shortla nd Street	AM	0.78	21	42	C
	PM	0.29	10	9	B
Adderton Road/ New link road across railway line	AM	0.18	19	4	C
	PM	0.13	18	3	C
Sturt Street/ New link road through Sturt Park	AM	0.04	6	1	A
	PM	0.04	66	1	A

Table 6.2 shows the traffic generated by the Master Plan (without further mitigating measures) is expected to have a signific ant impact during the peak periods to the operation of the following key intemal intersections:

- Adderton Road/ Manson Street- The give-way priority control measure at the Adderton Road/ Manson Street intersection would not ac commodate development traffic. The key traffic movement at this intersection is recognised to be the left tum movement from Manson Street to Adderton Road heading south.
- SturtStreet/ Manson Street- The intersection is shown to exceed capacity during the AM peak. The Manson Street approach is restric ted to a single-lane arrangement heading north, which delays traffic movements from this approach, mainly because of right-tuming vehic les giving way to Sturt Street through traffic.
- Evans Road/ Sturt Street- The intersection has been assessed as a four-leg intersection as per the Telopea Master Plan, which indic ates Evans Road is proposed to connect with Cunningham Street through Sturt Park to the south. The existing give-way priority control at this intersection would not accommodate the forecast additional peak hour traffic generated by the proposal. Signific ant delays would be experienced on both approaches of Evans Road, largely caused by giving way to Sturt Street traffic .
- Evans Road/ Shortand Street- The intersection would operate satisfactory with the existing intersection layout arrangement, considering the additional traffic generated by the proposal. Most of the additional traffic would be through movements along Evans Road, which do not have to stop and give way at the intersection.
- New at-grade crossing of rail comidor-The proposed rail level crossing linking Sturt Street and Adderton Road has been assessed as having give-way, priority control intersections at both ends, although it is noted that any at-grade crossing of the light rail tracks would be signalised, particularly for safety considerations. A one-lane per direction layout is expected to accommodate the forecast traffic, with localised widening at the intersections.

6.3.2 Intemal Intersections - Mitigating Measures and Intersection Works

The additional peak hour traffic that is expected to be generated by the development cannot be accommodated by the existing intersection layouts and upgrades need to occur.

Table 6.3 outlines recommended mitigation measures, involving intersection upgrades to manage the impacts on operational efficiency of these intersections, because of the additional traffic generated by the development.

Table 6.3: Recommended Mitigating and Intersection Works - Intemal Intersections

The above outline potential treatmentsthat would mitigate the traffic impacts of the Telopea Master Plan. The detailed design of intersection upgrades will oc cur aspart of future studies and in conjunction with Council.

The future operation of the key intemal intersections including the mitigating and intersection works have been assessed using SIDRA INTERSEC TION and a summary of the future operation shown in Table 6.4, with full results in Appendix B of this report.

GTAConsultants.

Table 6.4: Post-Development Operating Conditions with Upgrades - Intemal Intersections

Intersection	Peak	Degree of Saturation (DOS)	Average Delay (sec)	95th Percentile Queue (m)	Level of Senvice (LOS)
Adderton Road/ Manson Street	AM	0.75	16	79	B
	PM	0.63	11	107	B
Sturt Street/ Manson Street	AM	0.73	25	71	C
	PM	0.13	10	6	A
EvansRoad/ Sturt Street	AM	0.94	24	159	C
	PM	0.05	14	2	B
EvansRoad/ Shortland Street	AM	0.78	20	42	C
	PM	0.29	8	9	A
Adderton Road/ New link road across the railway line	AM	0.58	6	88	A
	PM	0.63	6	99	A
Sturt Street/ New link road across the railway line	AM	0.09	13	10	B
	PM	0.11	13	12	B

As shown in Table 6.4, the recommended mitigating and intersection works on the intemal study intersections a re expected to provide suffic ient peak hour traffic capacity for the Master Plan, with all movements indic ating satisfactory performance.

A summary of the existing, "without Mitigation Works" and "with Mitigation Works" scenarios for the peak hour operating conditions of the intemal intersections is shown in Table 6.5.

Table 6.5: Intemal Intersections Operating Conditions

Intersection	Peak	Leg with Worst MovementExisting	Existing LOS	Leg with Worst MovementMaster Plan	LOS with but without Mitigation Works		Recommended Mitigation Works	LOS with Mitigation Works
Adderton Road/ Manson Street	AM	East	B	East	F	\bigcirc	Add an extra lane to the Manson Street approach to separate right/ left tuming vehic les. Assume Adderton Road widened to be two travel lanes per direction post-development (at least at intersections). Convert the intersection to signal control (circ a 60 second cycle time).	B
	PM	East	C	East	F			B
Sturt Street/ Manson Street	AM	North	A	South	F	0	Convert the intersection to a prionty-controlled roundabout with a single lane each direction.	c
	PM	North	A	South	B			A
Evans Road/ Sturt Street	AM	North	A	North	F	-	Convert the intersection to a prionity-controlled roundabout with a single lane each direction.	c
	PM	North	A	North	F			B

6.3.3 Extemal Intersections - Operating Conditions

Intersection a nalysis using SIDRA INTERSECTION was undertaken for the key intersections on the arterial road network likely to be used as access and/ or egress by the additional traffic generated by the MasterPlan, to investigate potential impacts on their operation during the road network peak periods:

- Pennant HillsRoad/ Adderton Road
- Pennant HillsRoad/ Coleman Avenue
- Pennant HillsRoad/ Evans Road
- Kissing Point Road/ Sturt Street
- Kissing Point Road/ Adderton Road.

The existing peak-hour operating conditions at these intersections have been presented in Table 2.4, which indicated generally satisfactory overall intersection levels of service, with all five key extemal intersections operating at or below capacity during the peak periods.

Table 6.6 showsthe operating conditions of the key extemal intersections with the additional traffic expected to be generated by the proposal, keeping existing intersection layouts and signal phasing arrangements. Summary findings are provided below.

- Pennant Hills Road/ Adderton Road - The existing intersection la yout and signal a rrangements at this intersection is not able to ac commodate the traffic generated by the Master Plan. Due to the existing through traffic conditions along Pennant Hills Road, traffic exiting Adderton Road will likely be impacted by additional traffic generated by the MasterPlan, increasing delays. The south and east legs would operate beyond capacity during the AM and PM peak hours.
- Pennant Hills Road/ Coleman Avenue - The additional peak period traffic generated by the Master Plan would not cause any major changes in operation at this intersection. Although traffic exiting the Master Plan area via Coleman Avenue is expected to experience slightly higher delays and longer queues, the overall intersection performance is expected to remain within satisfactory limits.
- Pennant Hills Road/ Evans Road - The priority-c ontrol a ra ngement of this intersection is shown to be inefficient for the existing traffic, with LOSE on the south approach. It is not expected to accommodate the increase in traffic from the MasterPlan, with the south leg condition deteriorating to LOSF in both AM and PM peaks.
- Kissing Point Road/ Sturt Street- The traffic generated by the Master Plan is expected to cause minorincreasesin delay at this intersection, although the intersection isstill expected to operate within satisfactory limits. A key movement detected from the modelling is the right-tum movement from Sturt Street onto Kissing Point Road. The additional traffic generated by the Master Plan is likely to cause this movement to operate above capacity during the PM peak period.
- Kissing Point Road/ Adderton Road - The existing a rrangement of this intersection is expected to accommodate additional traffic generated by the MasterPlan, with slightly higher delays during the AM peak period. The levels of service with and without the Master Plan would rema in at the same level during the PM peak period.

Full results of the intersection assessment for the scenario "with Master Plan without Mitigation Works" are presented in Appendix C.

Table 6.6: Development Operating Conditions with Existing Arangements - Extemal Intersections

Intersection	Peak	Degree of Saturation (DOS)	Average Delay (sec)	95th Percentile Queue (m)	Level of Service (LOS)
Penna nt Hills Road (Cumberland Highway)/ Adderton Road	AM	0.99	61	693	E
	PM	1.05	86	714	F
Penna nt Hills Road (Cumberland Highway)/ Coleman Avenue	AM	0.79	27	292	B
	PM	0.78	18	306	B
Pennant Hills Road (Cumberland Highway)/ EvansRoad	AM	1.41	416	218	F
	PM	1.28	304	155	F
Kissing Point Road/ Sturt Street	AM	0.88	38	319	C
	PM	0.96	29	253	C
Kissing Point Road/ Adderton Road	AM	0.85	32	294	C
	PM	0.83	21	273	B

6.3.4 Extemal Intersections - Recommended Mitigating Measures and Intersection Works

The existing a rangements of the key extemal intersections will not be sufficient to accommodate the forecast growth envisaged by the Master Plan, mainly due to the existing traffic congestion along Pennant Hills Road and Kissing Point Road.

Table 6.7 outlinespotential mitigation and intersection works on the existing layout and signal phasing a rrangements to minimise any adverse effects on road safety and operational efficiency resulting from the Master Plan. It is noted that the extemal intersections are either out of the Master Plan area and/ or connect with a State road, under the administrative jurisdiction of Roads and Maritime.

This section outlines potential mitigation measures that do not require signific ant reconfiguration of existing intersection la youts, to assess whether such mea sures would be suffic ient to address traffic impacts of the additional traffic generation. These measures include proposed signal optimisation and changesto linemarking. Where inadequate, other mitigation works will need to be investigated, which could involve reconfiguration of intersection layouts such as additional tuming bays or traffic lanes. This will involve further more detailed disc ussions with Roa ds and Maritime.

It is also understood that Roads and Maritime is proposing to upgrade the Pennant HillsRoad/ EvansRoad/ LoydsAvenue intersection into a signalised intersection at some point in the future, however no funding has yet been committed. For puposes of assessment, this upgrade has been included as part of the recommended mitigation measures. The potential upgradeswould mitigate the traffic impacts of the Telopea Master Plan. The detailed design of upgrades will occur aspart of future studies and in conjunction with Roads and Maritime.

Table 6.7: Recommended Mitigation and Intersection Works - Extemal Intersections

The future operation of the key extemal intersections inc luding the mitigation and intersection works have been assessed using SIDRA INTERSECTION a nd a summary of the future operation shown in Table 6.8, with full results in Appendix B of this report.

Table 6.8: Post-Development Operating Conditions with Upgrades - Extemal Intersections

Intersection	Peak	Degree of Saturation (DOS)	Average Delay (sec)	95th Percentile Queue (m)	Level of Senvice (LOS)
Pennant Hills Road (Cumberland Highway)/ Adderton Road	AM	0.95	46	584	D
	PM	0.97	64	634	E
Pennant Hills Road (Cumberland Highway)/ Coleman Avenue	AM	0.80	23	308	B
	PM	0.80	15	321	B
Pennant Hills Road (Cumberland Highway)/ EvansRoad	AM	0.77	24	279	B
	PM	0.79	23	280	B
Kissing Point Road/ Sturt Street	AM	0.76	27	245	B
	PM	0.78	25	208	B
Kissing Point Road/ Adderton Road	AM	0.86	32	294	C
	PM	0.83	21	273	B

Although there are intersections that are approaching capacity in 2036, the level of traffic generated by the MasterPlan is not expected to result in any signific ant delays with the mitigation measures shown in Table 6.8.

It is noted that further detailed investigation and potential intersection works may be required at the Pennant HillsRoad/ Adderton Road intersection to be able to accommodate appropriate future intersection operation. Intersection modelling suggests that an additional right tum lane on Pennant Hills Road and additional short left tum lane on Adderton Road are required at this location to maintain satisfactory intersection operation. These potential upgrades would require detailed discussions with Roads and Maritime. Discussions with Council indic ate that traffic could potentially be encouraged through Robert Street/ Tintem Avenue to reduce pressure on the Pennant Hills Road/ Adderton Road intersection.

It is further noted that the Parramatta Light Rail project is likely to result in furtherlocal and regional traffic impacts, both bec ause of station access and circulations, as well as other redevelopment activity. Given the scale of development and signific ant a mount of
development traffic (66 percent) expected to use Kissing Point Road, intersection works at the connections to Sturt Street and Adderton Road may be required and is subject to further investigation.

A summary of the existing, "Master Plan without Mitigation Works" and "Master Plan with Mitigation Works" scenariosfor the peak hour operating conditions of the key extemal intersections to the Master Plan area is shown in Table 6.9.

Table 6.9: Extemal Intersections Operating Conditions - Post Development - 15 years

Intersection	Peak	Existing LOS	Leg with Worst Movement- Development Traffic	LOS with Development Traffic with Mitigation Works
Pennant Hills Road (Cumberland Highway)/ Adderton Road	AM	E	signal optimisation (retain 130 second cycle time) linemarking for extra right tum movement on westem leg (2 right tum movements from the west) O removal of kerbside parking on southem leg exit lane	D
	PM	F		E
Pennant Hills Road (Cumberland Highway)/ Coleman Avenue	AM	B	O signal optimisation (retain 130 second cycle time)	B
	PM	B		B
Pennant Hills Road (Cumberland Highway)/ EvansRoad	AM	F	O convert to traffic signals (130 second cycle time)	B
	PM	F		B
Kissing Point Road/ Sturt Street	AM	C	O signal optimisation (retain 120 second cycle time)	B
	PM	C		B
Kissing Point Road/ Adderton Road	AM	C	O signal optimisation (retain 120 second cycle time)	C
	PM	B		B

6.4 Intersection Upgrades Delivery Plan

For assessment purposes, future background growth along Pennant HillsRoad (Cumberland Highway) and Kissing Point Road has not been considered in modelling future yearscenarios and will be discussed with Transport for NSW at a later sta ge.

The Telopea Master Plan proposes to deliver between 3,500 to 4,500 new dwellings over a 20 -year period. As a result, development traffic will gradually inc rease and intersection upgrades will be required at different stagesthroughout development. Without the provision of a development staging plan, the following assumptions have been made for assessment purpose:

- high-density residential development at Polding Place and Moffatts Drive will be completed within five years
- private and social/ affordable housing outside of the core will be progressively developed throughout the project an assumed rate of around 250 dwellings peryear
- development in the core area will commence after five years and be progressively developed throughout the remainder of the project
- the light rail project and light rail crossing will be completed at the same time.

The impacts of the proposed development traffic have been assessed at the following stages:

- development at five years
- development at 15 years.

6.4.1 Intemal Intersections

The impacts of development traffic for the first five years a nd first fifteen years in relation to intemal intersections ${ }^{8}$ have been assessed with full results in Table 6.1 and Table 6.13 respectively. For assessment purposes, it is assumed the Pa rramatta Light Rail project will be completed after the five-year mark and hence the light rail crossing will not be available in the first five years of development.

Table 6.10: Five Years- Operating Conditions - Intemal Intersections (without mitigation measures)

Intersection	Peak	Worst Leg	Degree of Saturation (DOS)	Average Delay (sec)	95th Percentile Queue (m)	Level of Service (LOS) with Development 0-5 Years
Adderton Road/ Manson Street	AM	East	0.54	30	17	C
	PM	East	0.52	24	15	C
Sturt Street/ Manson Street	AM	South	0.42	5	14	A
	PM	South	0.08	6	2	A
Evans Road/ Sturt Street	AM	North	0.20	3	0	A
	PM	North	0.05	5	0	A
EvansRoad/ Shortland Street	AM	West	0.28	14	8	B
	PM	West	0.14	6	4	A

[^6]Table 6.11: 15 Years Operating Conditions - Intemal Intersections (without mitigation measures)

Intersection	Peak	Worst Leg	Degree of Saturation (DOS)	Average Delay (sec)	95th Percentile Queue (m)	Level of Service (LOS) with Developmento15 Years
Adderton Road/ Manson Street	AM	East	0.69	36	25	C
	PM	East	0.57	29	17	D
Sturt Street/ Manson Street	AM	South	0.53	7	27	A
	PM	South	0.14	6	4	A
Evans Road/ Sturt Street	AM	North	0.26	3	0	A
	PM	North	0.10	5	0	A
Evans Road/ Shortland Street	AM	West	0.30	14	9	B
	PM	West	0.15	6	4	A

Table 6.10 shows that all intemal intersections are expected to operate satisfactorily in the first five years of development. As such, it is a ntic ipated that mitigation works for intersections serving the area will not be required in the first five years of development on a traffic capacity basis. However, it is expected that some intersection upgrades would be implemented from a traffic management and/or safety perspective, depending on the overall development staging strategy.

Table 6.11 indicates minor increases in delay to the intemal intersections, partic ula rly Adderton Road and Manson Street. The intemal intersections are expected to perform satisfactorily up to 15 years, although the proposed upgradesin Table 6.5 should commence to accommodate for additional traffic generation proposed as part of the development's completion.

6.4.2 Extemal Intersections

The impacts of development traffic at five years and 15 years in relation to the extemal intersections have been assessed with full results in Table 6.12 a nd Table 6.13 respectively.

Table 6.12: 5 Years Operating Conditions - Extemal Intersections (without mitigation measures)

Intersection	Peak	Leg	Degree of Saturation (DOS) [1]	Average Delay (sec)	95th Percentile Queue (m)	Level of Service (LOS)
Pennant Hills Road (Cumberland Highway)/ Adderton Road	AM	Overall	1.29	27	319	B
	PM	Overall	1.22	26	246	B
Pennant Hills Road (Cumberland Highway)/ Coleman Avenue	AM	Overall	0.91	15	176	B
	PM	Overall	0.70	14	234	A
Pennant Hills Road (Cumberland Highway)/ EvansRoad (unsignalised)	AM	South	1.16	205	101	F
	PM	South	0.89	62	21	E
Kissing Point Road/ Sturt Street	AM	Overall	0.84	18	156	B
	PM	Overall	1.25	29	322	C
Kissing Point Road/ Adderton Road	AM	Overall	0.85	28	254	B
	PM	Overall	0.92	26	235	B

Table 6.13: 15 Years Operating Conditions - Extemal Intersections (without mitigations measures)

Intersection	Peak	Leg	Degree of Saturation (DOS) [1]	Average Delay (sec)	95th Percentile Queue (m)	Level of Service (LOS)
Pennant Hills Road (Cumberland Highway)/ Adderton Road	AM	Overall	1.33	29	321	C
	PM	Overall	2.56	76	325	F
Penna nt Hills Road (Cumberland Highway)/ Coleman Avenue	AM	Overall	1.08	20	177	B
	PM	Overall	0.69	14	31	A
Pennant Hills Road (Cumberland Highway)/ Evans Road (unsignalised)	AM	South	1.38	390	204	F
	PM	South	0.89	63	3	E
Kissing Point Road/ Sturt Street	AM	Overall	0.94	22	158	B
	PM	Overall	1.51	49	490	D
Kissing Point Road/ Adderton Road	AM	Overall	0.88	29	257	C
	PM	Overall	0.96	27	246	B

The Pennant Hills Road and Evans Road intersection would likely require the Roads and Maritime proposed signal conversion upgrade within the next five years. The existing priority-control a rrangement will result in LOSF for the south a pproach and signific ant delays. The Pennant Hills Road and Coleman Avenue intersection wasfound to operate satisfactorily within five years, although the south approach operates at LOSF during the AM peak period.

The Penna nt Hills Road and Adderton Road intersection would likely require the mitigation measures in Table 6.7 within 15 years, as it was found to operate at LOSF during the PM peak period. The right tum from Penna nt Hills Road into Adderton Road is expected to experience signific ant delays with the existing intersection a mangements. Traffic exiting Adderton Road onto Pennant Hills Road is also expected to experience signific ant delays operating with LOSE during any peak period.

The Kissing Point Road and Sturt Street intersection wasfound to operate satisfactorily within 15 years, although the east leg was found to operate at LOS F in the PM peak due to the right tum movement from Kissing Point Road to Sturt Street. In addition to signal optimisation, future intersection works may also be required at this location given the scale of development proposed.

Although the intersection of Kissing Point Road and Adderton Road was found to operate satisfactorily within 15 years, intersection works are likely required due to the scale of development and is subject to further investigation.

7. LocalArea Traffic Management

7.1 Overview

Local Area Traffic Management (LATM) isconcemed with the planning and management of road space usage on local and collector roads, which is primarily the responsibility of local govemment.

The primary a im of LATM is to change driver behaviour, both directly by physic al influence on vehicle operation, and indirectly by influencing the driver's perceptions of what is appropriate behaviour in that street. The objective of LATM is to reduce traffic volumes and speeds in local roads to increase livea bility and improve safety and access for pedestria ns and cyclists.

LATM involves the use of physical devices, streetsc a ping treatments a nd other measures (including regulations and other non-physic al measures) to influence vehicle operation to create safer and more pleasant roads in local areas.

7.2 LATM Treatment Types

An a nalysis of traffic volumes a nd speeds, together with input from the stakeholders generally informs the selection of the most suitable traffic control devices.

Two types of control devices are available - regulatory and geometric. Regulatory controls can be used as altematives to or in addition to the geometric controls where necessary.

7.2.1 Geometric Controls

Geometric controls suita ble to LATM schemes include:

- road closures
- restriction/ channelisation
- T-Intersection priority
- thresholds, both at entries and mid-block locations
- staggered T-intersection
- carriageway narrowing
- slow points
- road Humps
- kerb Extensions
- wombatCrossings
- roundabouts
- medians
- pedestrian crossings, refuges/ mid-block islands.

7.2.2 Regulatory Controls

Regulatory signs (Type R for example 'Stop' signs) are used to regulate the movement of traffic by indicating where or when a legal requirement applies. Fa ilure to comply with regulatory signs constitutes a traffic offence.

Signage as well as linemarking can be used to regulate traffic movements and/ or calm traffic . It may discourage speeding, prevent vehicle conflicts, a nd prevent through traffic from shortcutting along a street. The primary aims of signs and linemarking are to aid in the safe and orderly movement of traffic.

7.2.3 Summary of LATM Devices

Table 7.1 provides a summary of typical LATM devices, which has been reproduced from Austroads Guide to Traffic Management Part 8, (2008). The guideline provides a clearindic ation of the type of treatments a vailable, which issues they best address, and the a dvantages and disadvantages of each treatment.

Table 7.1: Use of LATM Devices

Measure		Reduce Speeds	Reduce Traffic Volumes	Reduce Crash Risks	Increase Pedestrian Safety	Increase Bicycle Safety
Vertical Deflection Devices	Watt Profile Road Humps	\checkmark	\checkmark	\checkmark	-	-
	Road Cushions	\checkmark	\checkmark	\checkmark	-	\checkmark
	Flat Top Road Humps	\checkmark	\checkmark	\checkmark	-	\checkmark
	Wombat Crossings	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Raised Pavements	\checkmark	\checkmark	\checkmark		\checkmark
Horizontal Deflection Devices	Lane Narrowing/ Kerb Extension	\checkmark	-	-	\checkmark	-
	Slow Points	\checkmark	\checkmark	-	-	-
	Centre Blister Islands	\checkmark	\checkmark	-	\checkmark	-
	Driveway Links	\checkmark	\checkmark	-	\checkmark	\checkmark
	Mid-Block Median Treatments	\checkmark	-	\checkmark	\checkmark	\checkmark
Diversion Devices	Full Road Closure	-	\checkmark	\checkmark	\checkmark	\checkmark
	Half Road Closure	-	\checkmark	\checkmark	\checkmark	\checkmark
	Diagonal Road Closure	-	\checkmark	\checkmark	\checkmark	\checkmark
	Modified 'T Intersection	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Left-In/ Left-Out Islands	-	\checkmark	\checkmark	\checkmark	-
Other treatments	Marked Pedestrian Crossings	-	-	\checkmark	\checkmark	\checkmark
	Threshold Treatments	\checkmark	\checkmark	\checkmark	-	\checkmark
	Tactile Surface Treatments	\checkmark	-	-	-	-
	Bicycle Facilities	-	-	\checkmark	-	\checkmark

[^7]
7.3 Application of LATM to Telopea

The key objective for the Telopea study area is to achieve a network that will allow better connectivity for both intemal traffic movement and the broader road network. In doing so, appropriate traffic calming measures are required to reduce average travel speeds on collector road routes, such that there is no signific ant competitive advantage to avoiding major roads. On these collector roads, it is recommended that a combination of the following is provided:

- rounda bouts with appropriate channelisation at key intersec tions (or other treatment such as stop signs, with appropriate LATM considerations).
- kerb extensions at regular intervals (between two and six parking bays) to visually na row the camiageway
- vertic al or horizontal deflection at 80-120 metre intervals.

LATM devices should seek to incorporate and/orintegrate with pedestrian facilities wherever possible to improve road user safety outcomes.

- on local roads, it is recommended that a combination of the following is provided:
- entry treatments, including kerb extensions, at intersections with collector roads (as appropriate).
- One-lane slow points at appropriate mid-block loc ations on longer streets.

The camiageway widths on roads within Telopea are variable and do not necessarily match the future hierarchy. In addition to the above treatments, it is recommended that edge lines are marked on all collector roads to visually narrow the camiageway to 6-7 metres wide and provide a level of uniformity with respect to travel lane widths. This will also better delineate available onstreet pa rking.

7.4 Pedestrian Safety

The addition of roundabouts at key intersections within the core area would create a slow-speed environment and the incorporation of refuge islands in to roundabout design would be able to accommodate localised pedestrian movements.

The addition of localised pedestrian management schemes would be considered during the detailed design stage in-line with the LATM design which would ensure safe pedestrian desire lines.

8.

Based on the a nalysis and discussion presented within this report, the following conclusions are made:
i Telopea in its end state proposes to provide between 3,500 to 4,500 a dditional residential dwellings, 7,000 square metres of retail space (including a supermarket) and 3,000 square metres of new community space.
ii An Expert Panel Review assessed the draft Telopea Master Plan and provided commentary and recommendations which have been addressed in the finalisation of the Telopea Master Plan.
iii The existing operation of key intemal and extemal intersections were assessed based on 2016 traffic counts. The key intemal intersec tions were found to operate satisfactorily with minimal delays, whilst the key extemal intersectionswere found to operate with acceptable delays except for the Pennant Hills Road and EvansRoad intersection which currently operatesabove capacity.
iv A midblock capacity assessment forkey roads within the study area indicated some roads exceeded the Roadsand Maritime environmental capacity, namely Evans Road, Sturt Street and Adderton Road. The proportion of heavy vehic les on Marshall Road also exceeds environmental capacity.
v The planned road hierarchy structure provides a fine-grained network which would manage the impacts of the eventual traffic uplift and limit the existing high through-traffic volumesto desired roads. New vehicle, pedestrian and cycling connectionswould increase site permeability and remove existing key movement bariers.
vi Off-street recommended parking rates would create a balance for parking provisions in light of the future Parramatta Light Rail and light rail stop to encourage the use of public transportation.
vii On-street parking restrictions based on carriageway widths and including time restrictions for remaining parking should be introduced to avoid insufficient camiageway widths for twoway traffic on high-density roads and disc ourage all-day on-street parking.
viii The Pa rramatta Light Rail would signific antly benefit the local area through the provision of frequent services with direct links to key destinations. The Telopea light rail precinct will be a key transportation node servicing the local a rea and potentially attract more public transportation users through the addition of more facilities.
ix The site is expected to generate approximately 1,689 and 1,811 additional trips during the AM and PM peaks respectively.
x To manage the development traffic impacts on both intemal and extemal intersections, mitigating measures would be required.
xi All intemal intersections are expected to operate satisfactorily within the first 15 years of development, although the proposed intersection upgradesshould form part of the local area traffic management strategy, which should be prepared as part of the detailed design to manage traffic movement and speeds.
xii The extemal intersections assessed would likely require intersection upgrades within 15 years, particularly the Pennant Hills Road and Evans Road intersection, noting that changes to local traffic pattems as a result of the Parramatta Light Rail would require further assessment.
xiii The Pennant Hills Road (Cumberland Highway) and Adderton Road intersection would be nearing capacity in the PM peak in 15 years with mitigation measures, future monitoring of this intersection would be required.

Appendix A

Survey Results

E PERIOD																												
										${ }^{4} 4$ venic			Light in												GRAND TOTAL			
	89	,	0	${ }_{91}$	${ }_{1}$	-	0	11	${ }_{28}$		0	28				$\frac{2}{2}$	5				$\frac{\text { Light }}{190}$		O,	190				
			0	70	8	0	0	8	199	0	0	19	6				4		0		156							
16:30 <- 16.45	69	2	0	71	17	0	0	17	17	0	0	${ }^{17}$	9		0	9	4	0	0		165	-	0	165				
16:45 \ 17.000	66	2	0	68	7	0	\bigcirc	7	23	1	\bigcirc	30	5	\bigcirc	0	5	5	1	\bigcirc	6	162		\bigcirc	163	274			279
17:00 = 17: 17:15	${ }^{76}$	0	0	76	8	0	\bigcirc	8	30	0	\bigcirc	30	11		0	11	7		\bigcirc	7	1888	0		188	320			
17:30	7	1	0	78	12	0	0	12	23	0	0	23	6	0	0	6	9	0	0	9	2216		0		${ }_{343}$	2		345
17:45	7	0	0	7	\square	0	-	17	22	0	0	22	8	0		8	7	0	0		208				${ }^{33}$			
7:45- $\mathrm{S}^{18: 00}$	9	2	0	93	7	0	0		22	0	0	22	6	0	0		10	0	0	10	176	0	0	176		2		
	615	$\stackrel{9}{9}$	0	624	87	0	0	87	190		0		53	1	0		51	1	0	52				1465				

TIME PERIOD	VEHICLE MOVEMENT OCamera Position																								VEHICLE MOVEMENT																										
					$\text { Light: Haay; } 2$				$\text { Light: Heavi } 3 \text { Crc } \leq$												$\text { Light: Heavi: Cyc: }^{6}$				Light Heavi ${ }^{7}$ Cyd								Loght Hawi Cyo: $\frac{9}{}$				Light Heavi: Cyc				$\operatorname{Light~}^{11} \text { Heavi: Cyc } \leq$				$\begin{array}{\|l\|l} \hline \text { Light Heavy: Cyc: } \\ \hline \end{array}$				$\begin{array}{\|l\|l\|} \hline \text { GRAND TOTAL } \\ \hline \text { Light Heary Coyc: } \\ \hline \end{array}$		
7:00 7 \% 7 715	\bigcirc	\bigcirc	\bigcirc	\cdots	0	- 0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc		2	\bigcirc	4	${ }^{6}$	\bigcirc	\bigcirc	\cdots	${ }^{18}$	\bigcirc	\bigcirc	18	\bigcirc	\bigcirc	0	\bigcirc	5	\bigcirc	0	5	${ }^{3}$	\bigcirc		3				4					${ }^{37}$		
${ }_{7}^{7,350}$	0	-	\bigcirc	0	\bigcirc	-	0	0	-	0	0	0	\bigcirc	0	0	\bigcirc	${ }^{3}$,	0	${ }^{3}$	7	1	0	${ }_{8}$	57	2	0	59	$\stackrel{1}{1}$	0	0	-	${ }^{4}$	0	0	${ }_{6}$	2	0	0	2	${ }^{3}$	2	0	${ }_{11}$	0	0	0		${ }^{53}$		0 0
7.745×8.00	\bigcirc	0	0	0	0	\bigcirc	0	0	0	0	0	0	0	0	0	0	5	1	0	4	- 15	- 1	0	16	72	1	0	${ }^{3}$	0	0	0	\bigcirc	5	0	0	5	4	0	0	4	7	1	0	8	\bigcirc	0	0		106	4	0.93
8:00	0	0	0	\bigcirc	\bigcirc	\bigcirc	0	-	\bigcirc	0	\bigcirc	\bigcirc	1	\bigcirc	0	T	6	2	\bigcirc	8	\cdots	-1	0	11	7	3	\bigcirc	7	1	\bigcirc	\bigcirc	\cdots	6	\bigcirc	\bigcirc	6	4	0	\bigcirc	\cdots	2	1	\bigcirc	3	0	\bigcirc	\bigcirc	0	109	7	$\bigcirc 108$
8:15: ${ }^{\text {a }}$ 8:30	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	1	\bigcirc	\bigcirc	1	\bigcirc	\bigcirc	0	\bigcirc	3	1	\bigcirc	4	-11	0	\bigcirc	117	7	1	\bigcirc	7	\bigcirc	\bigcirc	\bigcirc	\bigcirc	4	\bigcirc	\bigcirc	4	7	0	\bigcirc	7	9	2	\bigcirc	11	0	\bigcirc	0		106	4	110
	\bigcirc	0	\bigcirc		\bigcirc		\bigcirc		\bigcirc			0				0			0			0			104		0	-105	\square	0	\bigcirc		\cdots	\square	\bigcirc	\bigcirc	7	0	0	7	6	0	0	6	\cdots	\bigcirc	0		159		4
8.45 - 9.00	0	0	0	\bigcirc	0	0	0	0	2	0	0	2	0	0	0	0		1	0	5	${ }^{28}$	2	0	${ }_{30}$	${ }^{87}$	1	0	88	1	0	\bigcirc	1	${ }^{13}$	1	0	14	3	0	0	3	3	2	0	5	$\stackrel{1}{1}$	0	0	$\stackrel{1}{1}$	142	7	- 148
Σ			0																														52																		

TMME PERIOD																													
		Light: Heaw Bus				Light Heavi Bus ${ }^{3}$								$\left\lvert\, \begin{array}{l\|l\|l\|l\|l\|:\|} \\ \text { Ligeay } \\ \hline \end{array}\right.$															
16:15	$1{ }^{16} 3$	211	\bigcirc	0	21	60°	0	0	60	3	\bigcirc	\bigcirc	${ }^{35}$	40	$\stackrel{\square}{1}$	\bigcirc	4	9	2	\bigcirc	Ii		\bigcirc	\bigcirc		16			${ }^{138}$
$16: 30$	16:45	19	1	0	20	${ }^{36}$	1	0	${ }^{37}$	4	0	0	4	40	1	0	4	10	0	0	10	4	0	0	4	151			154
16:45	-17:00	13	\bigcirc	\bigcirc	${ }^{13}$	${ }^{39}$	\bigcirc	\bigcirc	39	4	1	\bigcirc	48	33	2	\bigcirc	${ }^{34}$	- 9	0	0	-	4		0	5	${ }^{194}$	4		${ }^{148}$
17:00	17:15	13	\bigcirc	\bigcirc	13	40	0	\bigcirc	40	${ }^{34}$	0	\bigcirc	${ }^{34}$	${ }^{38}$	\bigcirc	\bigcirc	${ }^{33}$	${ }^{11}$	3	\bigcirc	14	3	0	\bigcirc	3	139	${ }^{3}$		
17:15		$1 / 1$	\bigcirc	0		49	1	\bigcirc	50	51	11	\bigcirc	52	4	3	\bigcirc	${ }^{4} 5$	4	0	\bigcirc		8	0	0	8				
1730	17:45	20	0	0	20	37	1	0	38	52	1		53	${ }^{35}$			36	13			16	9							
17:45	$18: 00$	15	0	0	15	37	1	0	38	44	0	0	44	35	3	0	38	11	0	0	1	6	0	0	6	${ }_{148}$	4		

																										GRAND TO			
TIME PERIOD			$\frac{1}{5}$			Heavi cyo				Light Heavi ${ }^{8} \mathrm{Cyc}$ [Light: Heawi Crc				Light Heay; Cyc				Light: Heavi Cra \quad I				${ }_{\text {Light }}^{\text {Lion }}$			
					5	${ }^{30}$		-	30	${ }^{28}$		0	2					${ }^{22}$		-	\times								
-76:15	${ }^{16,3}$	3	3	0	6	55	0	0	${ }_{5} 5$	20	0	0	20	9	0	0	9	i9	0	0	-19	10 10	2	0	122				
	-16:45	6		\bigcirc	7	${ }^{36}$	2	0	38	${ }^{23}$	0	\bigcirc		7		0		20	0	\bigcirc	20	17	${ }^{3}$	0	20	109			
	17:00	7	0	0	7	${ }^{32}$	\bigcirc	\bigcirc	32	39	1	\bigcirc	4	8	0	0		14	0	\bigcirc	14	${ }^{13}$	1	0	14	1.13		-	
17:00	17:15	3	4	0	7	${ }^{28}$	0	0	2	${ }^{28}$	0	\bigcirc	${ }^{28}$	4	0	0		-19	0	\bigcirc	19	9	2		11	9			
		3	\bigcirc	\bigcirc		4	-	\bigcirc	45	${ }^{34}$	0	\bigcirc	${ }^{34}$	13		\bigcirc		17	\bigcirc	\bigcirc	17	$\stackrel{ }{9}$				121			
17:30	17:45	5	2	0		${ }^{37}$		0	38	51	0			6		0		25	0		25	18	3		21	142			
17:45	18.00	3	0	0	3	${ }^{33}$	1	0	34	${ }^{36}$	0	0	36	4	0	0	4	17			17	16			18	109			

Appendix B

SIDRA Intersection Results (Intemal Intersections)

SITE LAYOUT

Site: Adderton Road/ Manson Street - AM (Ex)
16S9023000
Telopea Urban Renewal - Existing AM
Adderton Road/ Manson Street
Giveway / Yield (Two-Way)
Adderton Road (N)

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Created: Thursday, 5 May 2016 10:00:51 AM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModellingISIDRAl160309-Telopea Urban Renewal-Existing.sip6

MOVEMENT SUMMARY

∇ Site: Adderton Road/ Manson Street - AM (Ex)

16S9023000
Telopea Urban Renewal - Existing AM
Adderton Road/ Manson Street
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \text { \% } \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Adderton Road (S)											
2	T1	411	0.3	0.451	7.6	LOS A	4.4	31.1	0.68	0.20	44.2
3	R2	108	3.9	0.451	17.1	LOS B	4.4	31.1	0.68	0.20	42.6
Appro		519	1.0	0.451	9.6	NA	4.4	31.1	0.68	0.20	43.9
East: Manson Street (E)											
4	L2	64	1.6	0.361	11.1	LOS A	1.3	9.3	0.81	0.98	38.6
6	R2	48	4.3	0.361	26.2	LOS B	1.3	9.3	0.81	0.98	38.5
Appro		113	2.8	0.361	17.6	LOS B	1.3	9.3	0.81	0.98	38.6
North: Adderton Road (N)											
7	L2	245	0.9	0.490	4.6	LOS A	0.0	0.0	0.00	0.13	48.5
8	T1	773	1.8	0.490	0.1	LOS A	0.0	0.0	0.00	0.13	49.2
Appro		1018	1.6	0.490	1.2	NA	0.0	0.0	0.00	0.13	49.0
All Ve		1649	1.5	0.490	5.0	NA	4.4	31.1	0.27	0.21	46.5

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

∇ Site: Adderton Road/ Manson Street - PM (Ex)

16S9023000
Telopea Urban Renewal - Existing PM
Adderton Road/ Manson Street
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
Mov	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \text { \% } \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Adderton Road (S)											
2	T1	832	0.3	0.421	0.2	LOS A	0.6	4.0	0.07	0.02	49.7
3	R2	35	0.0	0.421	7.0	LOS A	0.6	4.0	0.07	0.02	48.8
Appr		866	0.2	0.421	0.5	NA	0.6	4.0	0.07	0.02	49.6
East: Manson Street (E)											
4	L2	33	0.0	0.402	8.0	LOS A	1.5	10.6	0.75	0.93	39.0
6	R2	102	0.0	0.402	19.7	LOS C	1.5	10.6	0.75	0.93	38.8
Appr		135	0.0	0.402	16.9	LOS C	1.5	10.6	0.75	0.93	38.9
North: Adderton Road (N)											
7	L2	46	0.0	0.185	4.6	LOS A	0.0	0.0	0.00	0.07	49.0
8	T1	341	0.9	0.185	0.0	LOS A	0.0	0.0	0.00	0.07	49.6
Appr		387	0.8	0.185	0.6	NA	0.0	0.0	0.00	0.07	49.5
All Ve		1388	0.4	0.421	2.1	NA	1.5	10.6	0.11	0.12	48.5

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SITE LAYOUT

Site: Sturt Street/ Manson Street/ Community Centre Access - AM (Ex)

16S9023000
Telopea Urban Renewal - Existing AM
Sturt Street/ Manson Street/ Access
Giveway / Yield (Two-Way)

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Created: Thursday, 5 May 2016 10:01:29 AM
Project: P:I16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModellingISIDRA\160309-Telopea Urban Renewal-Existing.sip6

MOVEMENT SUMMARY

V Site: Sturt Street/ Manson Street/ Community Centre Access - AM (Ex)

16S9023000

Telopea Urban Renewal - Existing AM
Sturt Street/ Manson Street/ Access
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Manson Street (S)											
1	L2	35	3.0	0.386	3.5	LOS A	1.8	13.0	0.24	0.48	38.3
2	T1	3	0.0	0.386	3.2	LOS A	1.8	13.0	0.24	0.48	38.6
3	R2	357	1.8	0.386	4.3	LOS A	1.8	13.0	0.24	0.48	38.4
Appro		395	1.9	0.386	4.2	LOS A	1.8	13.0	0.24	0.48	38.4
East: Sturt Street (E)											
4	L2	84	3.8	0.055	5.6	LOS A	0.0	0.1	0.00	0.46	54.2
5	T1	22	23.8	0.055	0.0	LOS A	0.0	0.1	0.00	0.46	55.8
6	R2	1	0.0	0.055	5.6	LOS A	0.0	0.1	0.00	0.46	54.4
Appro		107	7.8	0.055	4.4	NA	0.0	0.1	0.00	0.46	54.5
North: Access											
7	L2	3	0.0	0.004	5.6	LOS A	0.0	0.1	0.09	0.54	53.5
8	T1	1	0.0	0.004	5.3	LOS A	0.0	0.1	0.09	0.54	54.0
9	R2	1	0.0	0.004	6.0	LOS A	0.0	0.1	0.09	0.54	53.5
Appro		5	0.0	0.004	5.6	LOS A	0.0	0.1	0.09	0.54	53.6
West: Sturt Street (W)											
10	L2	2	0.0	0.028	5.8	LOS A	0.1	0.9	0.18	0.26	55.1
11	T1	26	20.0	0.028	0.2	LOS A	0.1	0.9	0.18	0.26	56.5
12	R2	22	0.0	0.028	5.9	LOS A	0.1	0.9	0.18	0.26	55.3
Approach		51	10.4	0.028	2.9	NA	0.1	0.9	0.18	0.26	55.9
All Ve		558	3.8	0.386	4.1	NA	1.8	13.0	0.19	0.45	42.1

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

∇ Site: Sturt Street/ Manson Street/ Community Centre Access - PM (Ex)

16S9023000

Telopea Urban Renewal - Existing PM
Sturt Street/ Manson Street/ Access
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Manson Street (S)											
1	L2	24	0.0	0.070	4.7	LOS A	0.2	1.7	0.15	0.51	46.3
2	T1	1	0.0	0.070	4.3	LOS A	0.2	1.7	0.15	0.51	46.6
3	R2	52	0.0	0.070	5.3	LOS A	0.2	1.7	0.15	0.51	46.4
Appro		77	0.0	0.070	5.1	LOS A	0.2	1.7	0.15	0.51	46.4
East: Sturt Street (E)											
4	L2	125	0.0	0.082	5.5	LOS A	0.0	0.2	0.01	0.45	54.5
5	T1	36	14.7	0.082	0.0	LOS A	0.0	0.2	0.01	0.45	55.9
6	R2	3	0.0	0.082	5.6	LOS A	0.0	0.2	0.01	0.45	54.5
Appro		164	3.2	0.082	4.3	NA	0.0	0.2	0.01	0.45	54.8
North: Access											
7	L2	6	0.0	0.009	5.6	LOS A	0.0	0.2	0.08	0.54	53.5
8	T1	3	0.0	0.009	5.5	LOS A	0.0	0.2	0.08	0.54	54.0
9	R2	2	0.0	0.009	6.0	LOS A	0.0	0.2	0.08	0.54	53.6
Approach		12	0.0	0.009	5.7	LOS A	0.0	0.2	0.08	0.54	53.7
West: Sturt Street (W)											
10	L2	1	0.0	0.022	6.0	LOS A	0.1	0.6	0.19	0.21	55.5
11	T1	24	21.7	0.022	0.3	LOS A	0.1	0.6	0.19	0.21	57.0
12	R2	14	0.0	0.022	6.0	LOS A	0.1	0.6	0.19	0.21	55.7
Appro		39	13.5	0.022	2.4	NA	0.1	0.6	0.19	0.21	56.5
All Ve		292	3.6	0.082	4.3	NA	0.2	1.7	0.07	0.44	52.4

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SITE LAYOUT

V Site: Sturt Street/ Evans Road - AM (Ex)

16S9023000
Telopea Urban Renewal - Existing AM
Sturt Street/ Evans Road
Giveway / Yield (Two-Way)

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Created: Thursday, 5 May 2016 10:02:18 AM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModellingISIDRAl160309-Telopea Urban Renewal-Existing.sip6

MOVEMENT SUMMARY

V Site: Sturt Street/ Evans Road - AM (Ex)

16S9023000

Telopea Urban Renewal - Existing AM
Sturt Street/ Evans Road
Giveway / Yield (Two-Way)

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

∇ Site: Sturt Street/ Evans Road - PM (Ex)

6S9023000

Telopea Urban Renewal - Existing PM
Sturt Street/ Evans Road
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: Sturt Street (E)											
5	T1	165	4.5	0.087	0.0	LOS A	0.0	0.0	0.00	0.00	50.0
6	R2	193	1.1	0.115	4.8	LOS A	0.6	3.9	0.19	0.50	46.1
Appr		358	2.6	0.115	2.6	NA	0.6	3.9	0.10	0.27	47.8
North: Evans Road (N)											
7	L2	175	1.8	0.205	4.7	LOS A	0.9	6.4	0.14	0.53	46.0
9	R2	67	0.0	0.205	7.8	LOS A	0.9	6.4	0.14	0.53	45.9
Appr		242	1.3	0.205	5.6	LOS A	0.9	6.4	0.14	0.53	46.0
West: Sturt Street (W)											
10	L2	27	0.0	0.038	4.6	LOS A	0.0	0.0	0.00	0.20	48.3
11	T1	47	13.3	0.038	0.0	LOS A	0.0	0.0	0.00	0.20	48.8
Approach		75	8.5	0.038	1.7	NA	0.0	0.0	0.00	0.20	48.6
All Vehicles		675	2.8	0.205	3.6	NA	0.9	6.4	0.10	0.35	47.2

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SITE LAYOUT

Site: Evans Road/ Shortland Street - AM (Ex)
16S9023000
Telopea Urban Renewal - Existing AM
Evans Road/ Shortland Street
Giveway / Yield (Two-Way)

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Created: Thursday, 5 May 2016 10:03:08 AM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModellingISIDRAl160309-Telopea Urban Renewal-Existing.sip6

MOVEMENT SUMMARY

V Site: Evans Road/ Shortland Street - AM (Ex)

16S9023000

Telopea Urban Renewal - Existing AM
Evans Road/ Shortland Street
Giveway / Yield (Two-Way)

Movement Performance - Vehicles										
$\begin{array}{ll} \text { Mov } & \text { OD } \\ \text { ID } & \text { Mov } \end{array}$	Dema Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	$\begin{aligned} & \text { Deg. } \\ & \text { Satn } \\ & \mathrm{v} / \mathrm{c} \\ & \hline \end{aligned}$	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Evans Road (S)										
L2	18	11.8	0.304	4.7	LOS A	0.0	0.0	0.00	0.02	49.2
2 T1	623	0.7	0.304	0.0	LOS A	0.0	0.0	0.00	0.02	49.9
Approach	641	1.0	0.304	0.2	NA	0.0	0.0	0.00	0.02	49.9
North: Evans Road (N)										
8 T1	329	2.2	0.195	0.8	LOS A	0.5	3.6	0.15	0.04	49.1
9 R2	25	25.0	0.195	9.6	LOS A	0.5	3.6	0.15	0.04	48.0
Approach	355	3.9	0.195	1.4	NA	0.5	3.6	0.15	0.04	49.0
West: Shortland Street (W)										
10 L2	71	13.4	0.270	8.7	LOS A	1.0	7.8	0.67	0.88	42.9
12 R2	68	7.7	0.270	13.5	LOS B	1.0	7.8	0.67	0.88	42.9
Approach	139	10.6	0.270	11.0	LOS B	1.0	7.8	0.67	0.88	42.9
All Vehicles	1135	3.1	0.304	1.9	NA	1.0	7.8	0.13	0.13	48.6

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

V Site: Evans Road/ Shortland Street - PM (Ex)

16S9023000

Telopea Urban Renewal - Existing PM
Evans Road/ Shortland Street
Giveway / Yield (Two-Way)

Movement Performance - Vehicles										
Mov OD ID Mov	Dema Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Evans Road (S)										
L2	28	0.0	0.088	4.6	LOS A	0.0	0.0	0.00	0.08	49.0
2 T1	157	0.0	0.088	0.0	LOS A	0.0	0.0	0.00	0.08	49.5
Approach	185	0.0	0.088	0.7	NA	0.0	0.0	0.00	0.08	49.4
North: Evans Road (N)										
8 T1	154	2.1	0.092	0.2	LOS A	0.2	1.4	0.10	0.06	49.4
9 R2	21	30.0	0.092	5.7	LOS A	0.2	1.4	0.10	0.06	48.2
Approach	175	5.4	0.092	0.8	NA	0.2	1.4	0.10	0.06	49.3
West: Shortland Street (W)										
10 L2	63	13.3	0.135	5.3	LOS A	0.5	3.7	0.31	0.58	45.7
12 R2	82	0.0	0.135	6.1	LOS A	0.5	3.7	0.31	0.58	45.7
Approach	145	5.8	0.135	5.7	LOS A	0.5	3.7	0.31	0.58	45.7
All Vehicles	505	3.5	0.135	2.2	NA	0.5	3.7	0.12	0.22	48.3

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

V Site: Adderton Road/ Manson Street - AM (PD)

16S9023000
Telopea Urban Renewal - Post-Development AM
Adderton Road/ Manson Street
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \text { \% } \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Adderton Road (S) - $\mathrm{S}^{\text {c }}$											
2	T1	416	0.3	0.619	11.3	LOS A	8.0	56.5	1.00	0.38	42.1
3	R2	189	2.2	0.619	18.9	LOS B	8.0	56.5	1.00	0.38	40.4
Appro		605	0.9	0.619	13.7	NA	8.0	56.5	1.00	0.38	41.6
East: Manson Street (E)											
4	L2	400	0.3	0.997	56.0	LOS D	20.6	145.3	0.94	2.74	25.4
6	R2	72	2.9	0.997	79.7	LOS F	20.6	145.3	0.94	2.74	25.3
Appro		472	0.7	0.997	59.6	LOS E	20.6	145.3	0.94	2.74	25.4
North: Adderton Road (N)											
7	L2	252	0.8	0.483	4.6	LOS A	0.0	0.0	0.00	0.14	48.4
8	T1	751	1.8	0.483	0.1	LOS A	0.0	0.0	0.00	0.14	49.1
Approach		1002	1.6	0.483	1.2	NA	0.0	0.0	0.00	0.14	49.0
All Vehicles		2079	1.2	0.997	18.1	NA	20.6	145.3	0.50	0.80	39.3

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Tuesday, 21 June 2016 4:50:24 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModelling\SIDRAl1600610-Telopea Urban Renewal-PD (Option 1 Layout)(mit2).sip6

MOVEMENT SUMMARY

V Site: Adderton Road/ Manson Street - PM (PD)

16S9023000
Telopea Urban Renewal - Post-Development PM
Adderton Road/ Manson Street
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \mathrm{Mov} \\ & \mathrm{ID} \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Adderton Road (S)											
2	T1	885	0.2	0.743	4.0	LOS A	11.6	81.3	0.63	0.30	46.2
3	R2	372	0.0	0.743	10.8	LOS B	11.6	81.3	0.63	0.30	44.9
Appr		1257	0.2	0.743	6.0	NA	11.6	81.3	0.63	0.30	45.8
East: Manson Street (E)											
4	L2	117	0.0	1.299	309.7	LOS F	39.6	277.1	1.00	4.42	7.7
6	R2	108	0.0	1.299	373.3	LOS F	39.6	277.1	1.00	4.42	7.7
Appr		225	0.0	1.299	340.3	LOS F	39.6	277.1	1.00	4.42	7.7
North: Adderton Road (N)											
7	L2	69	0.0	0.209	4.6	LOS A	0.0	0.0	0.00	0.09	48.8
8	T1	368	0.9	0.209	0.0	LOS A	0.0	0.0	0.00	0.09	49.5
Appr		438	0.7	0.209	0.7	NA	0.0	0.0	0.00	0.09	49.4
All V		1920	0.3	1.299	44.0	NA	39.6	277.1	0.53	0.74	30.4

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Tuesday, 21 June 2016 3:36:14 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModelling\SIDRA\1600610-Telopea Urban Renewal-PD (Option 1 Layout)(mit2).sip6

SITE LAYOUT

Site: Adderton Road/ Manson Street - PM (PD-signals)
16S9023000
Telopea Urban Renewal - Post-Development PM
Signal Conversion
Signals - Fixed Time Isolated

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Created: Friday, 24 June 2016 2:25:00 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModelling\SIDRAl1600610-Telopea Urban Renewal-PD (Option 1 Layout)(mit2).sip6

MOVEMENT SUMMARY

Site: Adderton Road/ Manson Street - AM (PD-signals)

16S9023000
Telopea Urban Renewal - Post-Development AM
Signal Conversion
Signals - Fixed Time Isolated Cycle Time $=60$ seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \text { \% } \end{aligned}$	$\begin{aligned} & \text { Deg. } \\ & \text { Satn } \\ & \text { v/c } \end{aligned}$	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Adderton Road (S)											
2	T1	416	0.3	0.392	10.1	LOS A	7.6	53.3	0.66	0.57	43.9
3	R2	189	2.2	0.754	30.1	LOS C	6.1	43.4	0.94	0.98	33.7
Appr		605	0.9	0.754	16.3	LOS B	7.6	53.3	0.75	0.70	40.5
East: Manson Street (E)											
4	L2	400	0.3	0.719	26.8	LOS B	11.3	79.2	0.95	0.88	34.7
6	R2	72	2.9	0.131	21.3	LOS B	1.6	11.2	0.76	0.71	37.1
Appr		472	0.7	0.719	26.0	LOS B	11.3	79.2	0.92	0.86	35.0
North: Adderton Road (N)											
7	L2	252	0.8	0.483	15.3	LOS B	9.6	68.2	0.71	0.70	40.9
8	T1	751	1.8	0.483	10.7	LOS A	9.8	69.9	0.71	0.64	43.2
Approach		1002	1.6	0.483	11.9	LOS A	9.8	69.9	0.71	0.66	42.7
All Vehicles		2079	1.2	0.754	16.4	LOS B	11.3	79.2	0.77	0.71	40.2

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians								
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Description	$\begin{aligned} & \text { Demand } \\ & \text { Flow } \\ & \text { ped/h } \end{aligned}$	Average Delay \qquad sec	Level of Service	Average Back Pedestrian \qquad	Queue Distance \qquad	Prop. Queued	Effective Stop Rate per ped
P1	South Full Crossing	53	24.4	LOS C	0.1	0.1	0.90	0.90
P2	East Full Crossing	53	11.4	LOS B	0.1	0.1	0.62	0.62
All Pedestrians		105	17.9	LOS B			0.76	0.76

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Friday, 24 June 2016 2:28:22 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModelling\SIDRAl1600610-Telopea Urban Renewal-PD (Option 1
Layout)(mit2).sip6

MOVEMENT SUMMARY

Site: Adderton Road/ Manson Street - PM (PD-signals)

16S9023000
Telopea Urban Renewal - Post-Development PM
Signal Conversion
Signals - Fixed Time Isolated Cycle Time $=60$ seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \text { \% } \end{aligned}$	$\begin{aligned} & \text { Deg. } \\ & \text { Satn } \\ & \text { v/c } \end{aligned}$	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Adderton Road (S)											
2	T1	885	0.2	0.633	7.3	LOS A	15.2	106.9	0.66	0.61	45.4
3	R2	372	0.0	0.633	12.6	LOS B	7.7	54.2	0.68	0.75	41.7
Appr		1257	0.2	0.633	8.8	LOS A	15.2	106.9	0.67	0.65	44.3
East: Manson Street (E)											
4	L2	117	0.0	0.377	29.8	LOS C	3.2	22.4	0.93	0.77	33.6
6	R2	108	0.0	0.350	29.6	LOS C	3.0	20.7	0.93	0.76	33.8
Appr		225	0.0	0.377	29.7	LOS C	3.2	22.4	0.93	0.77	33.7
North: Adderton Road (N)											
7	L2	69	0.0	0.165	9.4	LOS A	2.6	18.2	0.43	0.46	44.9
8	T1	368	0.9	0.165	4.8	LOSA	2.6	18.5	0.43	0.40	46.6
Approach		438	0.7	0.165	5.5	LOS A	2.6	18.5	0.43	0.41	46.3
All Vehicles		1920	0.3	0.633	10.5	LOS B	15.2	106.9	0.64	0.61	43.3

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians								
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	South Full Crossing	53	24.4	LOS C	0.1	0.1	0.90	0.90
P2	East Full Crossing	53	7.0	LOS A	0.0	0.0	0.48	0.48
All Pedestrians		105	15.7	LOS B			0.69	0.69

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Friday, 24 June 2016 2:28:48 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModelling\SIDRAl1600610-Telopea Urban Renewal-PD (Option 1
Layout)(mit2).sip6

MOVEMENT SUMMARY

∇ Site: Sturt Street/ Manson Street/ Community Centre Access - AM (PD)

16S9023000

Telopea Urban Renewal - Post-Development AM
Sturt Street/ Manson Street/ Access
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
Mov	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { =lows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Manson Street (S)											
1	L2	41	2.6	1.186	181.4	LOS F	76.3	539.9	1.00	5.04	13.0
2	T1	53	0.0	1.186	182.4	LOS F	76.3	539.9	1.00	5.04	13.0
3	R2	527	1.2	1.186	192.1	LOS F	76.3	539.9	1.00	5.04	13.0
Appr		621	1.2	1.186	190.6	LOS F	76.3	539.9	1.00	5.04	13.0
East: Sturt Street (E)											
4	L2	198	1.6	0.161	5.6	LOS A	0.5	3.4	0.06	0.46	54.0
5	T1	52	10.2	0.161	0.1	LOS A	0.5	3.4	0.06	0.46	55.5
6	R2	63	0.0	0.161	5.7	LOS A	0.5	3.4	0.06	0.46	54.2
Appr		313	2.7	0.161	4.7	NA	0.5	3.4	0.06	0.46	54.3
North: Access											
7	L2	258	0.0	0.378	5.7	LOS A	1.9	13.2	0.11	0.55	53.0
8	T1	198	0.0	0.378	7.2	LOS A	1.9	13.2	0.11	0.55	53.5
9	R2	1	0.0	0.378	7.5	LOS A	1.9	13.2	0.11	0.55	53.1
Appr		457	0.0	0.378	6.3	LOS A	1.9	13.2	0.11	0.55	53.2
West: Sturt Street (W)											
10	L2	2	0.0	0.032	6.3	LOS A	0.1	1.0	0.29	0.27	54.8
11	T1	28	18.5	0.032	0.5	LOS A	0.1	1.0	0.29	0.27	56.2
12	R2	23	0.0	0.032	6.4	LOS A	0.1	1.0	0.29	0.27	55.0
Approach		54	9.8	0.032	3.3	NA	0.1	1.0	0.29	0.27	55.6
All V		1444	1.5	1.186	85.1	NA	76.3	539.9	0.49	2.45	22.9

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Tuesday, 21 June 2016 3:39:37 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModelling\SIDRA\1600610-Telopea Urban Renewal-PD (Option 1 Layout)(mit2).sip6

MOVEMENT SUMMARY

V Site: Sturt Street/ Manson Street/ Community Centre Access - PM (PD)

16S9023000

Telopea Urban Renewal - Post-Development PM
Sturt Street/ Manson Street/ Access
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \\ & \hline \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Manson Street (S)											
1	L2	25	0.0	0.600	7.1	LOS A	4.1	28.8	0.56	0.91	42.8
2	T1	198	0.0	0.600	10.2	LOS B	4.1	28.8	0.56	0.91	43.1
3	R2	166	0.0	0.600	13.8	LOS B	4.1	28.8	0.56	0.91	43.0
Appro		389	0.0	0.600	11.6	LOS B	4.1	28.8	0.56	0.91	43.0
East: Sturt Street (E)											
4	L2	291	0.0	0.325	5.7	LOS A	1.8	12.8	0.16	0.46	53.5
5	T1	61	8.6	0.325	0.2	LOS A	1.8	12.8	0.16	0.46	54.9
6	R2	258	0.0	0.325	5.8	LOS A	1.8	12.8	0.16	0.46	53.6
Appro		609	0.9	0.325	5.2	NA	1.8	12.8	0.16	0.46	53.7
North: Access											
7	L2	69	0.0	0.130	5.7	LOS A	0.5	3.4	0.15	0.56	52.4
8	T1	49	0.0	0.130	9.2	LOS A	0.5	3.4	0.15	0.56	52.8
9	R2	2	0.0	0.130	9.9	LOS A	0.5	3.4	0.15	0.56	52.4
Approach		121	0.0	0.130	7.2	LOS A	0.5	3.4	0.15	0.56	52.6
West: Sturt Street (W)											
10	L2	1	0.0	0.043	6.7	LOS A	0.2	1.1	0.25	0.17	55.9
11	T1	55	9.6	0.043	0.5	LOS A	0.2	1.1	0.25	0.17	57.4
12	R2	20	0.0	0.043	6.8	LOS A	0.2	1.1	0.25	0.17	56.1
Appro		76	6.9	0.043	2.3	NA	0.2	1.1	0.25	0.17	57.0
All Ve		1196	0.9	0.600	7.3	NA	4.1	28.8	0.30	0.60	49.7

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Friday, 24 June 2016 2:17:12 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModelling\SIDRA\1600610-Telopea Urban Renewal-PD (Option 1 Layout)(mit2).sip6

SITE LAYOUT

9 Site: Sturt Street/ Manson Street/ Community Centre Access - AM (PD-roundabout)
16S9023000
Telopea Urban Renewal - Post-Development AM
Roundabout Conversion
Roundabout

Manson Street (S)

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Created: Friday, 24 June 2016 2:31:40 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModellinglSIDRAl1600610-Telopea Urban Renewal-PD (Option 1 Layout)(mit2).sip6

MOVEMENT SUMMARY

9 Site: Sturt Street/ Manson Street/ Community Centre Access - AM (PD-roundabout)

16S9023000

Telopea Urban Renewal - Post-Development AM
Roundabout Conversion
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Manson Street (S)											
1	L2	41	2.6	0.506	4.1	LOS A	4.1	29.2	0.45	0.58	37.3
2	T1	53	0.0	0.506	3.5	LOS A	4.1	29.2	0.45	0.58	37.7
3	R2	527	1.2	0.506	6.3	LOS A	4.1	29.2	0.45	0.58	37.6
Appro		621	1.2	0.506	5.9	LOS A	4.1	29.2	0.45	0.58	37.6
East: Sturt Street (E)											
4	L2	198	1.6	0.289	6.2	LOS A	1.3	9.6	0.37	0.64	51.7
5	T1	52	10.2	0.289	5.6	LOS A	1.3	9.6	0.37	0.64	52.4
6	R2	63	0.0	0.289	8.3	LOS A	1.3	9.6	0.37	0.64	52.4
Appro		313	2.7	0.289	6.6	LOS A	1.3	9.6	0.37	0.64	52.0
North: Access											
7	L2	258	0.0	0.733	22.3	LOS C	10.1	70.8	1.00	1.22	42.9
8	T1	198	0.0	0.733	22.3	LOS C	10.1	70.8	1.00	1.22	43.3
9	R2	1	0.0	0.733	25.2	LOS C	10.1	70.8	1.00	1.22	43.0
Appro		457	0.0	0.733	22.3	LOS C	10.1	70.8	1.00	1.22	43.1
West: Sturt Street (W)											
10	L2	2	0.0	0.067	7.7	LOS A	0.3	2.1	0.52	0.71	50.9
11	T1	28	18.5	0.067	7.4	LOS A	0.3	2.1	0.52	0.71	51.2
12	R2	23	0.0	0.067	9.8	LOS A	0.3	2.1	0.52	0.71	51.4
Approach		54	9.8	0.067	8.4	LOS A	0.3	2.1	0.52	0.71	51.3
All Ve		1444	1.5	0.733	11.3	LOS B	10.1	70.8	0.61	0.80	42.2

Level of Service (LOS) Method: Delay (HCM 2000).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd \| sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Friday, 24 June 2016 2:31:41 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModelling\SIDRAI1600610-Telopea Urban Renewal-PD (Option 1
Layout)(mit2).sip6

MOVEMENT SUMMARY

θ Site: Sturt Street/ Manson Street/ Community Centre Access - PM (PD-Roundabout)

16S9023000

Telopea Urban Renewal - Post-Development PM
Roundabout Conversion
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \\ & \hline \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km / h
1	L2	25	0.0	0.414	6.6	LOS A	2.7	18.7	0.60	0.70	44.6
2	T1	198	0.0	0.414	6.3	LOS A	2.7	18.7	0.60	0.70	45.2
3	R2	166	0.0	0.414	9.2	LOS A	2.7	18.7	0.60	0.70	45.0
Appr		389	0.0	0.414	7.5	LOS A	2.7	18.7	0.60	0.70	45.1
East: Sturt Street (E)											
4	L2	291	0.0	0.444	5.7	LOS A	2.2	15.2	0.20	0.60	51.9
5	T1	61	8.6	0.444	5.1	LOS A	2.2	15.2	0.20	0.60	52.6
6	R2	258	0.0	0.444	7.9	LOS A	2.2	15.2	0.20	0.60	52.5
Appr		609	0.9	0.444	6.6	LOS A	2.2	15.2	0.20	0.60	52.2
North: Access											
7	L2	69	0.0	0.133	7.0	LOS A	0.9	6.2	0.55	0.61	52.1
8	T1	49	0.0	0.133	7.0	LOSA	0.9	6.2	0.55	0.61	52.8
9	R2	2	0.0	0.133	9.9	LOS A	0.9	6.2	0.55	0.61	52.4
Appr		121	0.0	0.133	7.1	LOS A	0.9	6.2	0.55	0.61	52.4
West: Sturt Street (W)											
10	L2	1	0.0	0.090	7.6	LOS A	0.4	2.7	0.50	0.70	51.3
11	T1	55	9.6	0.090	7.1	LOS A	0.4	2.7	0.50	0.70	52.0
12	R2	20	0.0	0.090	9.7	LOSA	0.4	2.7	0.50	0.70	51.9
Approach		76	6.9	0.090	7.8	LOS A	0.4	2.7	0.50	0.70	51.9
All Vehicles		1196	0.9	0.444	7.0	LOS A	2.7	18.7	0.38	0.64	49.6

Level of Service (LOS) Method: Delay (HCM 2000).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Friday, 24 June 2016 2:38:26 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModellingISIDRAI1600610-Telopea Urban Renewal-PD (Option 1 Layout)(mit2).sip6

MOVEMENT SUMMARY

V Site: Sturt Street/ Evans Road - AM (PD)

16S9023000

Telopea Urban Renewal - Post-Development AM
Sturt Street/ Evans Road
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Evans Road (S)											
1	L2	1	0.0	0.733	45.2	LOS E	3.0	21.3	0.97	1.14	24.5
2	T1	38	0.0	0.733	78.2	LOS F	3.0	21.3	0.97	1.14	24.5
3	R2	28	0.0	0.733	99.8	LOS F	3.0	21.3	0.97	1.14	24.5
Appr		67	0.0	0.733	86.8	LOS F	3.0	21.3	0.97	1.14	24.5
East: Sturt Street (E)											
4	L2	12	0.0	0.107	3.6	LOS A	0.0	0.0	0.00	0.06	41.1
5	T1	191	5.0	0.107	0.2	LOS A	0.0	0.0	0.00	0.06	41.5
6	R2	438	1.2	0.647	13.0	LOS B	4.7	33.5	0.82	1.22	35.1
Appr		640	2.3	0.647	9.0	NA	4.7	33.5	0.56	0.86	36.9
North: Evans Road (N)											
7	L2	552	2.1	1.937	858.8	LOS F	238.5	1693.8	1.00	13.69	3.8
8	T1	15	0.0	1.937	901.2	LOS F	238.5	1693.8	1.00	13.69	3.8
9	R2	177	0.6	1.937	922.5	LOS F	238.5	1693.8	1.00	13.69	3.8
Appr		743	1.7	1.937	874.8	LOS F	238.5	1693.8	1.00	13.69	3.8
West: Sturt Street (W)											
10	L2	416	0.5	0.393	3.4	LOS A	0.0	0.1	0.00	0.24	39.4
11	T1	389	2.2	0.393	0.0	LOS A	0.0	0.1	0.00	0.24	39.2
12	R2	1	0.0	0.393	4.6	LOS A	0.0	0.1	0.00	0.24	45.6
Approach		806	1.3	0.393	1.8	NA	0.0	0.1	0.00	0.24	39.3
All Vehicles		2257	1.7	1.937	293.8	NA	238.5	1693.8	0.52	4.87	9.5

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Tuesday, 21 June 2016 4:14:51 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModelling\SIDRA\1600610-Telopea Urban Renewal-PD (Option 1 Layout)(mit2).sip6

MOVEMENT SUMMARY

V Site: Sturt Street/ Evans Road - PM (PD)

16S9023000

Telopea Urban Renewal - Post-Development PM
Sturt Street/ Evans Road
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \hline \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \text { \% } \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Evans Road (S)											
1	L2	1	0.0	0.133	7.3	LOS A	0.4	3.0	0.85	0.92	42.2
2	T1	14	0.0	0.133	19.5	LOS C	0.4	3.0	0.85	0.92	42.4
3	R2	11	0.0	0.133	31.4	LOS D	0.4	3.0	0.85	0.92	42.3
Appr		25	0.0	0.133	24.0	LOS C	0.4	3.0	0.85	0.92	42.4
East: Sturt Street (E)											
4	L2	29	0.0	0.263	4.6	LOS A	0.0	0.0	0.00	0.04	49.8
5	T1	477	1.5	0.263	0.1	LOS A	0.0	0.0	0.00	0.04	51.0
6	R2	367	0.6	0.266	5.7	LOS A	1.4	9.6	0.43	0.60	45.6
Appr		874	1.1	0.266	2.6	NA	1.4	9.6	0.18	0.28	48.5
North: Evans Road (N)											
7	L2	219	1.4	1.396	378.6	LOS F	100.0	703.7	1.00	5.00	7.8
8	T1	39	0.0	1.396	406.3	LOS F	100.0	703.7	1.00	5.00	7.9
9	R2	221	0.0	1.396	414.6	LOS F	100.0	703.7	1.00	5.00	7.8
Appr		479	0.7	1.396	397.5	LOS F	100.0	703.7	1.00	5.00	7.8
West: Sturt Street (W)											
10	L2	135	0.0	0.137	4.6	LOS A	0.0	0.1	0.01	0.26	48.0
11	T1	143	4.4	0.137	0.0	LOS A	0.0	0.1	0.01	0.26	48.5
12	R2	1	0.0	0.137	6.9	LOS A	0.0	0.1	0.01	0.26	51.2
Approach		279	2.3	0.137	2.3	NA	0.0	0.1	0.01	0.26	48.3
All V		1657	1.1	1.396	117.0	NA	100.0	703.7	0.40	1.65	19.3

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Friday, 24 June 2016 2:17:42 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModelling\SIDRA\1600610-Telopea Urban Renewal-PD (Option 1 Layout)(mit2).sip6

SITE LAYOUT

© Site: Sturt Street/ Evans Road - AM (PD-Roundabout)
16S9023000
Telopea Urban Renewal - Post-Development AM
Roundabout Conversion
Roundabout

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Created: Friday, 24 June 2016 2:40:44 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModelling\SIDRA\1600610-Telopea Urban Renewal-PD (Option 1 Layout)(mit2).sip6

MOVEMENT SUMMARY

θ Site: Sturt Street/ Evans Road - AM (PD-Roundabout)

16S9023000
Telopea Urban Renewal - Post-Development AM
Roundabout Conversion
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Evans Road (S)											
1	L2	1	0.0	0.101	9.6	LOS A	0.5	3.7	0.68	0.78	49.7
2	T1	38	0.0	0.101	9.2	LOS A	0.5	3.7	0.68	0.78	50.4
3	R2	28	0.0	0.101	12.1	LOS B	0.5	3.7	0.68	0.78	50.1
Appro		67	0.0	0.101	10.4	LOS B	0.5	3.7	0.68	0.78	50.3
East: Sturt Street (E)											
4	L2	12	0.0	0.229	5.4	LOS A	1.6	11.6	0.54	0.53	44.2
5	T1	191	5.0	0.229	4.5	LOS A	1.6	11.6	0.54	0.53	38.7
6	R2	438	1.2	0.369	6.7	LOS A	3.1	22.1	0.57	0.62	37.3
Appro		640	2.3	0.369	6.0	LOS A	3.1	22.1	0.56	0.59	37.8
North: Evans Road (N)											
7	L2	552	2.1	0.848	12.9	LOS B	13.3	94.4	1.00	1.15	34.9
8	T1	15	0.0	0.848	12.1	LOS B	13.3	94.4	1.00	1.15	40.4
9	R2	177	0.6	0.848	15.0	LOS B	13.3	94.4	1.00	1.15	35.3
Appro		743	1.7	0.848	13.4	LOS B	13.3	94.4	1.00	1.15	35.1
West: Sturt Street (W)											
10	L2	416	0.5	0.940	24.5	LOS C	22.5	159.2	1.00	1.68	31.5
11	T1	389	2.2	0.940	23.8	LOS C	22.5	159.2	1.00	1.68	31.8
12	R2	1	0.0	0.940	26.6	LOS C	22.5	159.2	1.00	1.68	35.8
Approach		806	1.3	0.940	24.2	LOS C	22.5	159.2	1.00	1.68	31.7
All Ve		2257	1.7	0.940	15.1	LOS B	22.5	159.2	0.87	1.17	34.8

Level of Service (LOS) Method: Delay (HCM 2000).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Friday, 24 June 2016 2:40:42 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModellingISIDRAI1600610-Telopea Urban Renewal-PD (Option 1 Layout)(mit2).sip6

MOVEMENT SUMMARY

Site: Sturt Street/ Evans Road - PM (PD-roundabout)

16S9023000
Telopea Urban Renewal - Post-Development PM
Roundabout Conversion
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Evans Road (S) mill											
1	L2	1	0.0	0.051	12.8	LOS B	0.3	2.1	0.80	0.79	47.7
2	T1	14	0.0	0.051	12.4	LOS B	0.3	2.1	0.80	0.79	48.3
3	R2	11	0.0	0.051	15.3	LOS B	0.3	2.1	0.80	0.79	48.0
Appr		25	0.0	0.051	13.6	LOS B	0.3	2.1	0.80	0.79	48.2
East: Sturt Street (E)											
4	L2	29	0.0	0.444	6.6	LOS A	3.5	25.1	0.62	0.62	48.3
5	T1	477	1.5	0.444	5.8	LOS A	3.5	25.1	0.62	0.62	46.0
6	R2	367	0.6	0.370	8.9	LOS A	2.7	18.8	0.60	0.70	44.3
Appr		874	1.1	0.444	7.1	LOS A	3.5	25.1	0.61	0.65	45.3
North: Evans Road (N)											
7	L2	219	1.4	0.407	5.2	LOS A	2.5	17.3	0.39	0.61	45.3
8	T1	39	0.0	0.407	4.6	LOS A	2.5	17.3	0.39	0.61	49.1
9	R2	221	0.0	0.407	7.5	LOS A	2.5	17.3	0.39	0.61	45.8
Appr		479	0.7	0.407	6.2	LOS A	2.5	17.3	0.39	0.61	45.8
West: Sturt Street (W)											
10	L2	135	0.0	0.307	6.2	LOS A	1.7	11.8	0.55	0.67	45.3
11	T1	143	4.4	0.307	5.8	LOS A	1.7	11.8	0.55	0.67	45.9
12	R2	1	0.0	0.307	8.6	LOS A	1.7	11.8	0.55	0.67	48.7
Approach		279	2.3	0.307	6.0	LOS A	1.7	11.8	0.55	0.67	45.6
All Vehicles		1657	1.1	0.444	6.8	LOS A	3.5	25.1	0.54	0.64	45.6

Level of Service (LOS) Method: Delay (HCM 2000).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Friday, 24 June 2016 2:43:18 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModellingISIDRA\1600610-Telopea Urban Renewal-PD (Option 1 Layout)(mit2).sip6

MOVEMENT SUMMARY

∇ Site: Evans Road/ Shortland Street - AM (PD)

16S9023000

Telopea Urban Renewal - Post-Development AM
Evans Road/ Shortland Street
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { =lows } \\ \text { HV } \\ \text { \% } \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Evans Road (S)											
1	L2	51	4.2	0.400	4.6	LOS A	0.0	0.0	0.00	0.03	49.2
2	T1	791	0.5	0.400	0.1	LOS A	0.0	0.0	0.00	0.03	49.8
Appr		841	0.8	0.400	0.3	NA	0.0	0.0	0.00	0.03	49.7
North: Evans Road (N)											
8	T1	40	18.4	0.144	5.4	LOS A	0.7	5.6	0.69	0.57	44.7
9	R2	73	8.7	0.144	10.4	LOS B	0.7	5.6	0.69	0.57	44.0
Appr		113	12.1	0.144	8.6	NA	0.7	5.6	0.69	0.57	44.2
West: Shortland Street (W)											
10	L2	187	5.1	0.784	18.0	LOS C	5.8	42.2	0.89	1.38	39.0
12	R2	201	2.6	0.784	21.3	LOS C	5.8	42.2	0.89	1.38	38.9
Approach		388	3.8	0.784	19.7	LOS C	5.8	42.2	0.89	1.38	39.0
All Vehicles		1342	2.6	0.784	6.6	NA	5.8	42.2	0.32	0.47	45.6

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Friday, 24 June 2016 2:16:08 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModelling\SIDRA\1600610-Telopea Urban Renewal-PD (Option 1 Layout)(mit2).sip6

MOVEMENT SUMMARY

∇ Site: Evans Road/ Shortland Street - PM (PD)

16S9023000

Telopea Urban Renewal - Post-Development PM
Evans Road/ Shortland Street
Giveway / Yield (Two-Way)

Movement Performance - Vehicles										
Mov OD ID Mov	Dema Total veh/h	$\begin{gathered} \text { =lows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km / h
South: Evans Road (S)										
L2	161	0.0	0.191	4.6	LOS A	0.0	0.0	0.00	0.22	48.3
2 T1	236	0.0	0.191	0.0	LOS A	0.0	0.0	0.00	0.22	48.7
Approach	397	0.0	0.191	1.9	NA	0.0	0.0	0.00	0.22	48.5
North: Evans Road (N)										
8 T1	344	0.9	0.280	1.0	LOS A	1.3	9.5	0.34	0.18	48.2
9 R2	134	4.7	0.280	6.6	LOS A	1.3	9.5	0.34	0.18	47.5
Approach	478	2.0	0.280	2.6	NA	1.3	9.5	0.34	0.18	48.0
West: Shortland Street (W)										
10 L2	115	7.3	0.294	5.8	LOS A	1.2	8.8	0.44	0.69	44.6
12 R2	115	0.0	0.294	10.1	LOS B	1.2	8.8	0.44	0.69	44.5
Approach	229	3.7	0.294	8.0	LOS A	1.2	8.8	0.44	0.69	44.6
All Vehicles	1104	1.6	0.294	3.4	NA	1.3	9.5	0.24	0.30	47.5

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Friday, 24 June 2016 2:22:23 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModelling\SIDRAl1600610-Telopea Urban Renewal-PD (Option 1 Layout)(mit2).sip6

SITE LAYOUT

Site: Adderton Road/ New Link Road - AM (PD)

16S9023000

Telopea Urban Renewal - Post-Development AM
Adderton Road/ New Link Road
Giveway / Yield (Two-Way)

Adderton Road (N)

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Created: Friday, 24 June 2016 2:47:37 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModellingISIDRAl160309-Telopea Urban Renewal-New Link Roads.sip6

MOVEMENT SUMMARY

V Site: Adderton Road/ New Link Road - AM (PD)

16 S9023000
Telopea Urban Renewal - Post-Development AM
Adderton Road/ New Link Road
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back of Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
2	T1	451	2.3	0.250	0.8	LOS A	0.6	4.0	0.13	0.03	58.7
3	R2	22	0.0	0.250	12.1	LOS B	0.6	4.0	0.13	0.03	54.0
Appr		473	2.2	0.250	1.3	NA	0.6	4.0	0.13	0.03	58.6
East: New Link Road (E)											
4	L2	5	0.0	0.181	10.4	LOS B	0.5	3.8	0.83	0.93	38.9
6	R2	42	0.0	0.181	19.2	LOS C	0.5	3.8	0.83	0.93	38.7
Appr		47	0.0	0.181	18.2	LOS C	0.5	3.8	0.83	0.93	38.7
North: Adderton Road (N)											
7	L2	28	0.0	0.403	5.6	LOS A	0.0	0.0	0.00	0.02	31.6
8	T1	814	2.3	0.403	0.1	LOS A	0.0	0.0	0.00	0.02	59.7
Appr		842	2.3	0.403	0.2	NA	0.0	0.0	0.00	0.02	58.6
All V		1362	2.2	0.403	1.2	NA	0.6	4.0	0.07	0.06	58.0

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Friday, 24 June 2016 2:47:38 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModelling\SIDRAl160309-Telopea Urban Renewal-New Link
Roads.sip6

MOVEMENT SUMMARY

V Site: Adderton Road/ New Link Road - PM (PD)

16S9023000
Telopea Urban Renewal - Post-Development PM
Adderton Road/ New Link Road
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Adderton Road (S)											
2	T1	856	2.5	0.432	0.1	LOS A	0.4	3.2	0.05	0.02	59.6
3	R2	27	0.0	0.432	7.8	LOS A	0.4	3.2	0.05	0.02	55.2
Appr		883	2.4	0.432	0.4	NA	0.4	3.2	0.05	0.02	59.5
East: New Link Road (E)											
4	L2	27	0.0	0.127	6.7	LOS A	0.4	2.8	0.57	0.74	43.5
6	R2	27	0.0	0.127	17.8	LOS C	0.4	2.8	0.57	0.74	43.3
Appr		55	0.0	0.127	12.3	LOS B	0.4	2.8	0.57	0.74	43.4
North: Adderton Road (N)											
7	L2	23	0.0	0.173	5.6	LOS A	0.0	0.0	0.00	0.04	31.6
8	T1	337	2.5	0.173	0.0	LOS A	0.0	0.0	0.00	0.04	59.6
Appr		360	2.3	0.173	0.4	NA	0.0	0.0	0.00	0.04	57.6
All V		1298	2.3	0.432	0.9	NA	0.4	3.2	0.06	0.06	58.4

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Friday, 24 June 2016 2:49:08 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModellingISIDRAl160309-Telopea Urban Renewal-New Link
Roads.sip6

SITE LAYOUT

Site: Adderton Road/ New Link Road - AM (PD-signals)
16s9023000
Telopea Urban Renewal - Post-Development AM
Signal Conversion
Signals - Fixed Time Isolated

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Created: Friday, 24 June 2016 2:50:25 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModellingISIDRAl160309-Telopea Urban Renewal-New Link Roads.sip6

MOVEMENT SUMMARY

Site: Adderton Road/ New Link Road - AM (PD-signals)

16s9023000
Telopea Urban Renewal - Post-Development AM
Signal Conversion
Signals - Fixed Time Isolated Cycle Time $=60$ seconds (User-Given Cycle Time)

Movement Performance - Vehicles										
Mov OD ID Mov	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \text { \% } \end{aligned}$	$\begin{aligned} & \text { Deg. } \\ & \text { Satn } \\ & \text { v/c } \\ & \hline \end{aligned}$	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Adderton Road (S)										
2 T1	451	2.3	0.374	4.8	LOS A	6.1	43.8	0.48	0.43	55.4
3 R2	22	0.0	0.374	10.3	LOS B	6.1	43.8	0.48	0.43	49.4
Approach	473	2.2	0.374	5.0	LOS A	6.1	43.8	0.48	0.43	55.2
East: New Link Road (E)										
4 L2	5	0.0	0.255	34.4	LOS C	1.4	9.6	0.96	0.73	30.3
6 R2	42	0.0	0.255	34.4	LOS C	1.4	9.6	0.96	0.73	30.2
Approach	47	0.0	0.255	34.4	LOS C	1.4	9.6	0.96	0.73	30.2
North: Adderton Road (N)										
7 L2	28	0.0	0.576	10.4	LOS B	12.4	88.2	0.54	0.50	29.6
8 T1	814	2.3	0.576	4.9	LOSA	12.4	88.2	0.54	0.50	55.4
Approach	842	2.3	0.576	5.0	LOS A	12.4	88.2	0.54	0.50	54.4
All Vehicles	1362	2.2	0.576	6.1	LOS A	12.4	88.2	0.53	0.49	53.7

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians								
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	South Full Crossing	53	24.4	LOS C	0.1	0.1	0.90	0.90
P2	East Full Crossing	53	4.4	LOS A	0.0	0.0	0.38	0.38
All Pedestrians		105	14.4	LOS B			0.64	0.64

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Friday, 24 June 2016 2:50:23 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModelling\SIDRAl160309-Telopea Urban Renewal-New Link Roads.sip6

MOVEMENT SUMMARY

Site: Adderton Road/ New Link Road - PM (PD-signals)

16S9023000
Telopea Urban Renewal
Signal Conversion
Signals - Fixed Time Isolated Cycle Time $=60$ seconds (User-Given Cycle Time)

Movement Performance - Vehicles										
Mov OD ID Mov	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \text { \% } \end{aligned}$	$\begin{aligned} & \text { Deg. } \\ & \text { Satn } \\ & \mathrm{v} / \mathrm{c} \\ & \hline \end{aligned}$	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Adderton Road (S)										
2 T1	856	2.5	0.627	5.2	LOS A	13.8	98.7	0.58	0.54	55.1
3 R2	27	0.0	0.627	10.7	LOS B	13.8	98.7	0.58	0.54	49.1
Approach	883	2.4	0.627	5.3	LOS A	13.8	98.7	0.58	0.54	55.0
East: New Link Road (E)										
4 L2	27	0.0	0.295	34.6	LOS C	1.6	11.2	0.96	0.74	30.2
6 R2	27	0.0	0.295	34.5	LOS C	1.6	11.2	0.96	0.74	30.1
Approach	55	0.0	0.295	34.6	LOS C	1.6	11.2	0.96	0.74	30.2
North: Adderton Road (N)										
7 L2	23	0.0	0.247	9.0	LOS A	3.8	27.1	0.39	0.36	30.1
8 T1	337	2.5	0.247	3.5	LOSA	3.8	27.1	0.39	0.36	56.4
Approach	360	2.3	0.247	3.8	LOS A	3.8	27.1	0.39	0.36	54.5
All Vehicles	1298	2.3	0.627	6.2	LOS A	13.8	98.7	0.54	0.49	53.7

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians								
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Description	$\begin{aligned} & \text { Demand } \\ & \text { Flow } \\ & \text { ped/h } \end{aligned}$	Average Delay sec	Level of Service	Average Back Pedestrian ped	Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	South Full Crossing	53	24.4	LOS C	0.1	0.1	0.90	0.90
P2	East Full Crossing	53	4.4	LOS A	0.0	0.0	0.38	0.38
All Pedestrians		105	14.4	LOS B			0.64	0.64

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Friday, 24 June 2016 2:52:22 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModelling\SIDRAI160309-Telopea Urban Renewal-New Link Roads.sip6

SITE LAYOUT

Site: Sturt Street/ New Link Road - AM (PD)
16S9023000
Telopea Urban Renewal
Sturt Street/ New Link Road
Giveway / Yield (Two-Way)

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Created: Friday, 24 June 2016 2:55:11 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModellingISIDRAl160309-Telopea Urban Renewal-New Link Roads.sip6

MOVEMENT SUMMARY

∇ Site: Sturt Street/ New Link Road - AM (PD)

16S9023000

Telopea Urban Renewal
Sturt Street/ New Link Road
Giveway / Yield (Two-Way)

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Friday, 24 June 2016 2:55:28 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModellingISIDRAl160309-Telopea Urban Renewal-New Link
Roads.sip6

MOVEMENT SUMMARY

∇ Site: Sturt Street/ New Link Road - PM (PD)

16S9023000

Telopea Urban Renewal
Sturt Street/ New Link Road
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
Mov	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \text { } \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Sturt Street (S)											
1	L2	55	0.0	0.056	5.5	LOS A	0.0	0.0	0.00	0.28	56.0
2	T1	62	0.0	0.056	0.0	LOS A	0.0	0.0	0.00	0.28	57.5
Appro		117	0.0	0.056	2.6	NA	0.0	0.0	0.00	0.28	56.8
North: Sturt Street (N)											
8	T1	38	0.0	0.019	0.0	LOS A	0.0	0.0	0.01	0.02	59.8
9	R2	1	0.0	0.019	5.8	LOS A	0.0	0.0	0.01	0.02	57.9
Appro		39	0.0	0.019	0.2	NA	0.0	0.0	0.01	0.02	59.7
West: New Link Road (E)											
10	L2	1	0.0	0.044	5.7	LOS A	0.1	1.0	0.20	0.56	53.0
12	R2	51	0.0	0.044	5.9	LOS A	0.1	1.0	0.20	0.56	52.8
Approach		52	0.0	0.044	5.9	LOS A	0.1	1.0	0.20	0.56	52.8
All Ve		207	0.0	0.056	3.0	NA	0.1	1.0	0.05	0.30	56.3

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Friday, 24 June 2016 2:56:02 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModellingISIDRAl160309-Telopea Urban Renewal-New Link
Roads.sip6

SITE LAYOUT

Site: Sturt Street/ New Link Road - AM (PD-signals)
16s9023000
Telopea Urban Renewal
Signal Conversion
Signals - Fixed Time Isolated

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Created: Friday, 24 June 2016 2:57:02 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModellingISIDRAl160309-Telopea Urban Renewal-New Link Roads.sip6

MOVEMENT SUMMARY

Site: Sturt Street/ New Link Road - AM (PD-signals)

16s9023000
Telopea Urban Renewal
Signal Conversion
Signals - Fixed Time Isolated Cycle Time $=60$ seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km / h
South: Sturt Street (S)											
1	L2	40	0.0	0.093	14.0	LOS B	1.5	10.4	0.55	0.55	49.8
2	T1	57	0.0	0.093	8.4	LOS A	1.5	10.4	0.55	0.55	51.0
Appr		97	0.0	0.093	10.7	LOS B	1.5	10.4	0.55	0.55	50.5
North: Sturt Street (N)											
8	T1	51	0.0	0.058	8.3	LOS A	0.9	6.0	0.54	0.45	52.3
9	R2	6	0.0	0.058	13.8	LOS B	0.9	6.0	0.54	0.45	50.9
Appr		57	0.0	0.058	8.9	LOS A	0.9	6.0	0.54	0.45	52.2
West: New Link Road (E)											
10	L2	2	0.0	0.091	22.0	LOS C	1.1	7.6	0.75	0.72	43.2
12	R2	48	0.0	0.091	22.0	LOS C	1.1	7.6	0.75	0.72	43.0
Approach		51	0.0	0.091	22.0	LOS C	1.1	7.6	0.75	0.72	43.0
All Vehicles		204	0.0	0.093	13.0	LOS B	1.5	10.4	0.60	0.56	48.8

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians								
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	Queue Distance \qquad m	Prop. Queued	Effective Stop Rate per pea
P3	North Full Crossing	53	20.1	LOS C	0.1	0.1	0.82	0.82
P4	West Full Crossing	53	10.2	LOS B	0.1	0.1	0.58	0.58
All Pedestrians		105	15.1	LOS B			0.70	0.70

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Friday, 24 June 2016 2:59:46 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModelling\SIDRAl160309-Telopea Urban Renewal-New Link Roads.sip6

MOVEMENT SUMMARY

Site: Sturt Street/ New Link Road - PM (PD-signals)

16S9023000
Telopea Urban Renewal
Signal Conversion
Signals - Fixed Time Isolated Cycle Time $=60$ seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \text { \% } \end{aligned}$	$\begin{aligned} & \text { Deg. } \\ & \text { Satn } \\ & \text { v/c } \end{aligned}$	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Sturt Street (S) min mill											
1	L2	55	0.0	0.106	12.9	LOS B	1.7	11.8	0.52	0.55	50.3
2	T1	62	0.0	0.106	7.4	LOS A	1.7	11.8	0.52	0.55	51.5
Appr		117	0.0	0.106	10.0	LOS B	1.7	11.8	0.52	0.55	50.9
North: Sturt Street (N)											
8	T1	38	0.0	0.035	7.1	LOS A	0.5	3.7	0.50	0.38	53.6
9	R2	1	0.0	0.035	12.6	LOS B	0.5	3.7	0.50	0.38	52.1
Appr		39	0.0	0.035	7.2	LOS A	0.5	3.7	0.50	0.38	53.6
West: New Link Road (E)											
10	L2	1	0.0	0.104	23.8	LOS C	1.2	8.1	0.79	0.72	42.3
12	R2	51	0.0	0.104	23.7	LOS C	1.2	8.1	0.79	0.72	42.2
Approach		52	0.0	0.104	23.7	LOS C	1.2	8.1	0.79	0.72	42.2
All Vehicles		207	0.0	0.106	12.9	LOS B	1.7	11.8	0.58	0.56	48.9

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians								
Mov	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	f Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P3	North Full Crossing	53	21.7	LOS C	0.1	0.1	0.85	0.85
P4	West Full Crossing	53	9.1	LOS A	0.0	0.0	0.55	0.55
All Pedestrians		105	15.4	LOS B			0.70	0.70

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Friday, 24 June 2016 3:03:04 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModelling\SIDRAI160309-Telopea Urban Renewal-New Link Roads.sip6

Appendix C

SIDRA Intersection Results (Extemal Intersections)

SITE LAYOUT

Site: Pennant Hills Road/ Adderton Road - AM

16S9023000
Telopea Urban Renewal - Existing AM
7:45AM-8:45AM
Signals - Fixed Time Isolated

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Created: Thursday, 21 July 2016 2:59:30 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModelling\SIDRAIExternal Intersections\Existing\160309-Telopea Urban Renewal-External-Existing - (745-845 445-545).sip6

MOVEMENT SUMMARY

Site: Pennant Hills Road/ Adderton Road - AM

16S9023000
Telopea Urban Renewal - Existing AM
7:45AM-8:45AM
Signals - Fixed Time Isolated Cycle Time $=130$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Movement Performance - Vehicles										
Mov OD ID Mov	Dema Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Adderton Road (S)										
L2	20	15.8	0.773	67.7	LOS E	12.0	86.0	1.00	0.89	26.6
$3 \quad \mathrm{R} 2$	345	1.2	0.773	67.9	LOS E	12.0	86.0	1.00	0.89	26.7
Approach	365	2.0	0.773	67.9	LOS E	12.0	86.0	1.00	0.89	26.7
East: Pennant Hills Road (E)										
4 L2	465	0.7	0.773	20.9	LOS B	42.3	303.6	0.72	0.75	42.7
$5 \quad$ T1	1512	4.9	0.773	15.8	LOS B	42.3	303.6	0.74	0.72	47.0
Approach	1977	3.9	0.773	17.0	LOS B	42.3	303.6	0.74	0.73	45.9
West: Pennant Hills Road (W)										
11 T1	1129	4.5	0.390	4.9	LOS A	11.2	81.2	0.35	0.31	55.6
12 R2	87	1.2	0.696	74.1	LOS F	5.8	41.2	1.00	0.82	25.8
Approach	1217	4.2	0.696	9.8	LOS A	11.2	81.2	0.39	0.35	51.3
All Vehicles	3559	3.8	0.773	19.8	LOS B	42.3	303.6	0.65	0.61	44.3

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians

Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back of Queue Pedestrian ped	Prop. Distance Queued	Effective Stop Rate per ped	
P1	South Full Crossing	5	10.8	LOS B	0.0	0.0	0.41	0.41
P4	West Full Crossing	22	59.2	LOS E	0.1	0.1	0.95	0.95
All Pedestrians	27	49.9	LOS E			0.85	0.85	

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

MOVEMENT SUMMARY

Site: Pennant Hills Road/ Adderton Road - PM

16S9023000
Telopea Urban Renewal - Existing PM
4:45PM-5:45PM
Signals - Fixed Time Isolated Cycle Time $=130$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Deg. } \\ & \text { Satn } \\ & \mathrm{v} / \mathrm{c} \end{aligned}$	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Adderton Road (S)											
1	L2	20	0.0	0.708	55.0	LOS D	17.1	119.8	0.98	0.85	29.5
3	R2	555	0.2	0.708	55.3	LOS D	17.1	119.8	0.98	0.85	29.5
Appr		575	0.2	0.708	55.3	LOS D	17.1	119.8	0.98	0.85	29.5
East: Pennant Hills Road (E)											
4	L2	262	0.4	0.728	25.0	LOS B	37.6	271.6	0.76	0.74	41.1
5	T1	1407	5.1	0.728	19.8	LOS B	37.6	271.6	0.77	0.73	44.9
Appr		1669	4.4	0.728	20.6	LOS B	37.6	271.6	0.77	0.73	44.2
West: Pennant Hills Road (W)											
11	T1	1445	3.5	0.562	11.1	LOS A	23.0	165.9	0.56	0.51	50.8
12	R2	55	1.9	0.658	77.2	LOS F	3.7	26.5	1.00	0.79	25.2
Approach		1500	3.4	0.658	13.5	LOS A	23.0	165.9	0.57	0.52	49.0
All Vehicles		3744	3.3	0.728	23.1	LOS B	37.6	271.6	0.72	0.66	42.6

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians

$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	f Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	South Full Crossing	13	14.8	LOS B	0.0	0.0	0.48	0.48
P4	West Full Crossing	9	49.1	LOS E	0.0	0.0	0.87	0.87
All Pedestrians		22	29.5	LOS C			0.65	0.65

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SITE LAYOUT

Site: Pennant Hills Road/ Coleman Avenue - AM

16S9023000
Telopea Urban Renewal - Existing AM
7:45AM-8:45AM
Signals - Fixed Time Isolated

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Created: Thursday, 21 July 2016 3:01:39 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModelling\SIDRA\External Intersections\Existing\160309-Telopea Urban Renewal-External-Existing - (745-845_445-545).sip6

MOVEMENT SUMMARY

Site: Pennant Hills Road/ Coleman Avenue - AM

16S9023000
Telopea Urban Renewal - Existing AM
7:45AM-8:45AM
Signals - Fixed Time Isolated Cycle Time $=130$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Movement Performance - Vehicles											
Mov	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	Flows HV $\%$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Coleman Avenue (S)											
1	L2	53	6.0	0.154	51.8	LOS D	2.8	20.5	0.87	0.73	30.2
2	T1	21	0.0	0.618	54.2	LOS D	8.7	61.5	0.97	0.81	27.9
3	R2	125	0.8	0.618	58.7	LOS E	8.7	61.5	0.97	0.81	28.9
Appr		199	2.1	0.618	56.4	LOS D	8.7	61.5	0.94	0.79	29.1
East: Pennant Hills Road (E)											
4	L2	34	9.4	0.639	15.9	LOS B	28.1	204.7	0.57	0.54	46.7
5	T1	1545	4.6	0.639	9.6	LOS A	28.1	204.7	0.54	0.50	51.8
6	R2	42	0.0	0.275	24.1	LOS B	1.5	10.7	0.57	0.72	40.0
Appr		1621	4.6	0.639	10.1	LOS A	28.1	204.7	0.54	0.51	51.2
North: Coleman Avenue (N)											
7	L2	19	0.0	0.054	50.5	LOS D	1.0	6.8	0.85	0.69	30.7
8	T1	43	0.0	0.224	49.0	LOS D	3.7	26.1	0.89	0.72	29.6
9	R2	25	0.0	0.224	53.6	LOS D	3.7	26.1	0.89	0.72	30.8
Appr		87	0.0	0.224	50.7	LOS D	3.7	26.1	0.88	0.71	30.1
West: Pennant Hills Road (W)											
10	L2	3	0.0	0.543	14.6	LOS B	21.1	157.0	0.51	0.47	47.6
11	T1	1439	7.6	0.543	9.0	LOS A	21.1	157.0	0.50	0.46	52.3
12	R2	1	100.0	0.018	27.0	LOS B	0.0	0.5	0.54	0.64	38.7
Approach		1443	7.7	0.543	9.1	LOS A	21.1	157.0	0.50	0.46	52.2
All V		3351	5.7	0.639	13.5	LOS A	28.1	204.7	0.56	0.51	48.6

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians

Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	South Full Crossing	11	8.5	LOS A	0.0	0.0	0.36	0.36
P3	North Full Crossing	5	8.1	LOS A	0.0	0.0	0.35	0.35
P4	West Full Crossing	61	54.6	LOS E	0.2	0.2	0.92	0.92
All Pedestrians		77	45.1	LOS E			0.80	0.80

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

MOVEMENT SUMMARY

Site: Pennant Hills Road/ Coleman Avenue - PM

16S9023000
Telopea Urban Renewal - Existing PM
4:45PM-5:45PM
Signals - Fixed Time Isolated Cycle Time $=130$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	Flows HV $\%$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Coleman Avenue (S)											
1	L2	60	1.8	0.236	59.1	LOS E	3.4	24.5	0.93	0.75	28.6
2	T1	23	0.0	0.617	62.7	LOS E	6.4	45.5	1.00	0.81	26.3
3	R2	78	1.4	0.617	67.3	LOS E	6.4	45.5	1.00	0.81	27.2
Appr		161	1.3	0.617	63.6	LOS E	6.4	45.5	0.97	0.79	27.5
East: Pennant Hills Road (E)											
4	L2	86	2.4	0.662	13.0	LOS A	28.1	203.2	0.51	0.51	48.3
5	T1	1656	4.0	0.662	6.8	LOS A	28.1	203.2	0.47	0.45	53.8
6	R2	46	0.0	0.329	19.9	LOS B	1.5	10.8	0.52	0.71	41.8
Appr		1788	3.8	0.662	7.5	LOS A	28.1	203.2	0.47	0.46	53.1
North: Coleman Avenue (N)											
7	L2	21	0.0	0.103	57.7	LOS E	1.5	10.4	0.91	0.70	29.1
8	T1	57	3.7	0.456	58.5	LOS E	5.3	38.0	0.97	0.77	27.4
9	R2	36	0.0	0.456	63.5	LOS E	5.3	38.0	0.97	0.77	28.3
Appr		114	1.9	0.456	59.9	LOS E	5.3	38.0	0.96	0.76	28.0
West: Pennant Hills Road (W)											
10	L2	1	0.0	0.544	11.8	LOS A	19.9	142.7	0.43	0.40	49.5
11	T1	1597	3.0	0.544	6.2	LOS A	19.9	142.7	0.43	0.40	54.4
12	R2	1	100.0	0.020	23.1	LOS B	0.0	0.5	0.49	0.63	40.3
Approach		1599	3.1	0.544	6.2	LOS A	19.9	142.7	0.43	0.40	54.4
All V		3662	3.3	0.662	11.0	LOS A	28.1	203.2	0.49	0.46	50.2

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians

Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	South Full Crossing	33	6.2	LOS A	0.0	0.0	0.31	0.31
P3	North Full Crossing	5	5.9	LOS A	0.0	0.0	0.30	0.30
P4	West Full Crossing	60	59.3	LOS E	0.2	0.2	0.96	0.96
All Pedestrians		98	38.7	LOS D			0.70	0.70

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SITE LAYOUT

Site: Pennant Hills Road/ Evans Road/ Lloyds Avenue - AM
16S9023000
Telopea Urban Renewal - Existing AM
7:45AM-8:45AM
Giveway / Yield (Two-Way)

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Created: Thursday, 21 July 2016 3:02:45 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModelling\SIDRA\External Intersections\Existing\160309-Telopea Urban Renewal-External-Existing - (745-845_445-545).sip6

MOVEMENT SUMMARY

∇ Site: Pennant Hills Road/ Evans Road/ Lloyds Avenue - AM

16S9023000

Telopea Urban Renewal - Existing AM
7:45AM-8:45AM
Giveway / Yield (Two-Way)

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

∇ Site: Pennant Hills Road/ Evans Road/ Lloyds Avenue - PM

16S9023000

Telopea Urban Renewal - Existing PM
4:45PM-5:45PM
Giveway / Yield (Two-Way)

Movement Performance - Vehicles										
Mov OD ID Mov	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/C	Average Delay sec	Level of Service	95\% Back of Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Evans Road (S) min kin										
1 L2	359	0.6	0.491	10.3	LOS A	3.2	22.6	0.66	0.97	46.2
3 R2	91	1.2	0.862	57.5	LOS E	2.7	18.8	0.99	1.20	28.8
Approach	449	0.7	0.862	19.8	LOS B	3.2	22.6	0.72	1.01	41.2
East: Pennant Hills Road (E)										
4 L2	267	1.6	0.447	5.6	LOS A	0.0	0.0	0.00	0.19	56.5
$5 \quad$ T1	1415	4.7	0.447	0.1	LOS A	0.0	0.0	0.00	0.08	59.2
Approach	1682	4.2	0.447	1.0	NA	0.0	0.0	0.00	0.09	58.7
North: Lloyds Avenue (N)										
$7 \quad$ L2	53	0.0	0.098	9.8	LOS A	0.3	2.4	0.62	0.82	46.5
Approach	53	0.0	0.098	9.8	LOS A	0.3	2.4	0.62	0.82	46.5
West: Pennant Hills Road (W)										
11 T1	1543	3.2	0.404	0.1	LOS A	0.0	0.0	0.00	0.00	59.9
12 R 2	131	0.0	0.412	19.9	LOS B	1.4	10.1	0.89	1.01	41.8
Approach	1674	3.0	0.412	1.6	NA	1.4	10.1	0.07	0.08	57.9
All Vehicles	3858	3.2	0.862	3.6	NA	3.2	22.6	0.12	0.20	55.4

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SITE LAYOUT

Site: Kissing Point Road/ Sturt Street - AM

16S9023000
Telopea Urban Renewal - Existing AM
7:45AM-8:45AM
Signals - Fixed Time Isolated

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Created: Thursday, 21 July 2016 3:04:08 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModelling\SIDRA\External Intersections\Existing\160309-Telopea Urban Renewal-External-Existing - (745-845_445-545).sip6

MOVEMENT SUMMARY

Site: Kissing Point Road/ Sturt Street - AM

16S9023000
Telopea Urban Renewal - Existing AM
7:45AM-8:45AM
Signals - Fixed Time Isolated Cycle Time $=120$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Movement Performance - Vehicles											
Mov	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Deman Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \text { \% } \end{aligned}$	Deg. Satn V/C	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: Kissing Point Road (E)											
5	T1	1207	2.9	0.297	6.8	LOS A	8.5	60.9	0.40	0.35	61.9
6	R2	111	0.0	0.581	40.4	LOS C	6.5	45.7	1.00	0.88	35.4
Appr		1318	2.6	0.581	9.6	LOS A	8.5	60.9	0.45	0.40	58.3
North: Sturt Street (N)											
7	L2	107	2.0	0.578	51.2	LOS D	11.7	83.5	0.95	0.82	31.2
9	R2	313	3.0	0.578	52.3	LOS D	11.7	83.5	0.96	0.82	30.8
Appr		420	2.8	0.578	52.0	LOS D	11.7	83.5	0.96	0.82	30.9
West: Kissing Point Road (W)											
10	L2	266	5.5	0.598	21.4	LOS B	23.4	169.2	0.65	0.68	45.3
11	T1	1805	2.7	0.598	15.2	LOS B	24.7	176.9	0.66	0.62	53.7
Approach		2072	3.1	0.598	16.0	LOS B	24.7	176.9	0.66	0.63	52.5
All Vehicles		3809	2.9	0.598	17.8	LOS B	24.7	176.9	0.62	0.57	50.3

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians

Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P2	East Full Crossing	27	54.2	LOS E	0.1	0.1	0.95	0.95
P3	North Full Crossing	7	12.2	LOS B	0.0	0.0	0.45	0.45
All Pedestrians		35	45.3	LOS E			0.84	0.84

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

MOVEMENT SUMMARY

Site: Kissing Point Road/ Sturt Street - PM

16S9023000
Telopea Urban Renewal - Existing PM
4:45PM-5:45PM
Signals - Fixed Time Isolated Cycle Time $=120$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Movement Performance - Vehicles										
Mov OD ID Mov	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: Kissing Point Road (E)										
T1	2112	1.6	0.476	5.4	LOS A	14.8	104.9	0.40	0.36	63.4
6 R2	206	1.0	0.498	34.1	LOS C	10.6	74.6	0.93	0.91	37.7
Approach	2318	1.5	0.498	8.0	LOS A	14.8	104.9	0.45	0.41	59.8
North: Sturt Street (N)										
7 L2	69	1.5	0.493	55.4	LOS D	7.4	53.0	0.96	0.80	30.1
9 R2	185	3.4	0.493	57.1	LOS E	7.4	53.0	0.97	0.79	29.6
Approach	255	2.9	0.493	56.6	LOS E	7.4	53.0	0.97	0.79	29.8
West: Kissing Point Road (W)										
10 L2	197	4.3	0.495	22.8	LOS B	18.1	129.0	0.64	0.66	44.6
11 T1	1417	1.2	0.495	16.5	LOS B	18.8	133.1	0.65	0.60	52.7
Approach	1614	1.6	0.495	17.3	LOS B	18.8	133.1	0.65	0.61	51.6
All Vehicles	4186	1.6	0.498	14.5	LOS B	18.8	133.1	0.55	0.51	53.2

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians

$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P2	East Full Crossing	5	54.2	LOS E	0.0	0.0	0.95	0.95
P3	North Full Crossing	5	14.5	LOS B	0.0	0.0	0.49	0.49
All Pedestrians		11	34.3	LOS D			0.72	0.72

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SITE LAYOUT

Site: Kissing Point Road/ Adderton Road - AM

16S9023000
Telopea Urban Renewal - Existing AM
7:45AM-8:45AM
Signals - Fixed Time Isolated

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Created: Thursday, 21 July 2016 3:12:27 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModelling\SIDRA\External Intersections\Existing\160309-Telopea Urban Renewal-External-Existing - (745-845 445-545).sip6

MOVEMENT SUMMARY

Site: Kissing Point Road/ Adderton Road - AM

16S9023000

Telopea Urban Renewal - Existing AM
7:45AM-8:45AM
Signals - Fixed Time Isolated Cycle Time $=120$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn V/C	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: Kissing Point Road (E)											
5	T1	1383	3.2	0.374	10.2	LOS A	12.3	88.4	0.50	0.44	51.4
6	R2	160	0.7	0.764	65.8	LOS E	9.8	68.8	1.00	0.88	27.6
Appr		1543	2.9	0.764	16.0	LOS B	12.3	88.4	0.55	0.49	47.2
North: Adderton Road (N)											
7	L2	264	1.2	0.427	29.5	LOS C	10.3	72.5	0.72	0.75	37.6
9	R2	579	1.5	0.747	50.3	LOS D	19.1	135.6	0.95	0.86	30.8
Appr		843	1.4	0.747	43.8	LOS D	19.1	135.6	0.88	0.83	32.6
West: Kissing Point Road (W)											
10	L2	289	2.9	0.770	30.5	LOS C	32.6	234.2	0.88	0.83	39.4
11	T1	1828	3.5	0.770	26.7	LOS B	33.6	242.3	0.89	0.81	41.6
Approach		2118	3.4	0.770	27.2	LOS B	33.6	242.3	0.89	0.82	41.3
All Vehicles		4504	2.9	0.770	26.5	LOS B	33.6	242.3	0.77	0.71	41.0

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians

Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P2	East Full Crossing	5	49.5	LOS E	0.0	0.0	0.91	0.91
P3	North Full Crossing	5	21.6	LOS C	0.0	0.0	0.60	0.60
P3S	North Slip/Bypass Lane Crossing	5	17.1	LOS B	0.0	0.0	0.53	0.53
P4S	West Slip/Bypass Lane Crossing	5	17.1	LOS B	0.0	0.0	0.53	0.53
All Pe	estrians	21	26.3	LOS C			0.64	0.64

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

MOVEMENT SUMMARY

Site: Kissing Point Road/ Adderton Road - PM

16S9023000
Telopea Urban Renewal - Existing PM
4:45PM-5:45PM
Signals - Fixed Time Isolated Cycle Time $=120$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Deman Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: Kissing Point Road (E)											
5	T1	1972	1.8	0.434	4.2	LOS A	12.0	85.2	0.34	0.31	56.2
6	R2	311	0.7	0.692	50.1	LOS D	16.7	117.4	0.97	0.85	31.3
Appr		2282	1.7	0.692	10.4	LOS A	16.7	117.4	0.43	0.39	50.7
North: Adderton Road (N)											
7	L2	158	0.0	0.191	28.6	LOS C	5.8	40.9	0.68	0.72	37.9
9	R2	258	2.0	0.650	62.6	LOS E	7.6	54.1	1.00	0.82	27.9
Appr		416	1.3	0.650	49.7	LOS D	7.6	54.1	0.88	0.78	31.0
West: Kissing Point Road (W)											
10	L2	536	5.1	0.677	21.6	LOS B	24.7	179.0	0.77	0.79	42.5
11	T1	1427	0.3	0.677	23.8	LOS B	28.3	198.8	0.82	0.75	43.0
Approach		1963	1.6	0.677	23.2	LOS B	28.3	198.8	0.80	0.76	42.8
All V		4661	1.6	0.692	19.3	LOS B	28.3	198.8	0.63	0.58	44.7

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians

Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	queue Distance m	Prop. Queued	Effective Stop Rate per ped
P2	East Full Crossing	5	54.2	LOS E	0.0	0.0	0.95	0.95
P3	North Full Crossing	5	21.0	LOS C	0.0	0.0	0.59	0.59
P3S	North Slip/Bypass Lane Crossing	5	16.5	LOS B	0.0	0.0	0.53	0.53
P4S	West Slip/Bypass Lane Crossing	5	16.5	LOS B	0.0	0.0	0.53	0.53
All Pedestrians		21	27.1	LOS C			0.65	0.65

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SITE LAYOUT

Site: Pennant Hills Road/ Adderton Road - AM

16S9023000
Telopea Urban Renewal - Post-Development AM
7:45AM-8:45AM
Signals - Fixed Time Isolated

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Created: Thursday, 21 July 2016 1:40:02 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModellingISIDRA\External Intersections\Post Development w Existing Layout 1 160309-Telopea Urban Renewal-External-PD-(745-845_445-545).sip6

MOVEMENT SUMMARY

Site: Pennant Hills Road/ Adderton Road - AM

16S9023000
Telopea Urban Renewal - Post-Development AM
7:45AM-8:45AM
Signals - Fixed Time Isolated Cycle Time $=130$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km / h
South: Adderton Road (S)											
1	L2	238	1.3	0.981	98.8	LOS F	32.4	228.8	1.00	1.11	21.8
3	R2	463	0.9	0.981	99.6	LOS F	32.4	228.8	1.00	1.11	21.7
Appro		701	1.1	0.981	99.3	LOS F	32.4	228.8	1.00	1.11	21.7
East: Pennant Hills Road (E)											
4	L2	488	0.6	0.990	74.1	LOS F	96.7	692.7	1.00	1.14	26.4
5	T1	1726	4.3	0.990	71.0	LOS F	96.7	692.7	1.00	1.18	27.5
Appro		2215	3.5	0.990	71.7	LOS F	96.7	692.7	1.00	1.17	27.3
West: Pennant Hills Road (W)											
11	T1	1129	4.5	0.419	7.5	LOS A	13.9	101.0	0.43	0.39	53.4
12	R2	180	0.6	0.989	106.6	LOS F	15.3	107.8	1.00	1.08	21.0
Approach		1309	3.9	0.989	21.1	LOS B	15.3	107.8	0.51	0.48	44.0
All Ve		4225	3.2	0.990	60.6	LOS E	96.7	692.7	0.85	0.95	29.5

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians

Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	f Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	South Full Crossing	5	15.8	LOS B	0.0	0.0	0.49	0.49
P4	West Full Crossing	22	53.6	LOS E	0.1	0.1	0.91	0.91
All Pedestrians		27	46.3	LOS E			0.83	0.83

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

MOVEMENT SUMMARY

Site: Pennant Hills Road/ Adderton Road - PM

16S9023000
Telopea Urban Renewal - Post-Development PM
4:45PM-5:45PM
Signals - Fixed Time Isolated Cycle Time $=130$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Movement Performance - Vehicles										
Mov OD ID Mov	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Deg. } \\ & \text { Satn } \\ & \mathrm{v} / \mathrm{c} \end{aligned}$	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Adderton Road (S)										
L2	105	0.0	1.094	174.9	LOS F	41.9	293.3	1.00	1.33	15.0
3 R2	611	0.2	1.094	174.9	LOS F	41.9	293.3	1.00	1.33	15.0
Approach	716	0.1	1.094	174.9	LOS F	41.9	293.3	1.00	1.33	15.0
East: Pennant Hills Road (E)										
L2	354	0.3	1.108	175.2	LOS F	114.6	824.0	1.00	1.53	15.3
$5 \quad$ T1	1461	4.9	1.108	169.7	LOS F	114.6	824.0	1.00	1.61	15.8
Approach	1815	4.0	1.108	170.8	LOS F	114.6	824.0	1.00	1.59	15.7
West: Pennant Hills Road (W)										
11 T1	1445	3.5	0.527	8.1	LOS A	19.6	141.4	0.48	0.44	53.0
12 R 2	424	0.2	1.108	199.6	LOS F	51.5	361.4	1.00	1.29	13.7
Approach	1869	2.8	1.108	51.5	LOS D	51.5	361.4	0.59	0.63	32.1
All Vehicles	4400	2.8	1.108	120.8	LOS F	114.6	824.0	0.83	1.14	19.8

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians

$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	f Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	South Full Crossing	13	27.2	LOS C	0.0	0.0	0.65	0.65
P4	West Full Crossing	9	54.5	LOS E	0.0	0.0	0.92	0.92
All Pedestrians		22	38.9	LOS D			0.76	0.76

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SITE LAYOUT

Site: Pennant Hills Road/ Coleman Avenue - AM

16S9023000
Telopea Urban Renewal - Post-Development AM
7:45AM-8:45AM
Signals - Fixed Time Isolated

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Created: Thursday, 21 July 2016 1:48:18 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModelling\SIDRA\External Intersections\Post Development w Existing Layout1160309-Telopea Urban Renewal-External-PD-(745-845_445-545).sip6

MOVEMENT SUMMARY

Site: Pennant Hills Road/ Coleman Avenue - AM

16S9023000
Telopea Urban Renewal - Post-Development AM
7:45AM-8:45AM
Signals - Fixed Time Isolated Cycle Time $=130$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Movement Performance - Vehicles											
Mov	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	Flows HV $\%$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Coleman Avenue (S)											
1	L2	211	1.5	0.591	43.1	LOS D	10.5	74.6	0.84	0.78	32.6
2	T1	21	0.0	0.784	53.6	LOS D	11.6	81.5	0.93	0.90	28.0
3	R2	167	0.6	0.784	58.2	LOS E	11.6	81.5	0.93	0.90	29.0
Appr		399	1.1	0.784	50.0	LOS D	11.6	81.5	0.88	0.84	30.7
East: Pennant Hills Road (E)											
4	L2	76	4.2	0.765	25.4	LOS B	40.1	291.5	0.80	0.75	41.6
5	T1	1545	4.6	0.765	18.6	LOS B	40.1	291.5	0.75	0.70	45.8
6	R2	42	0.0	0.245	49.0	LOS D	2.3	16.2	0.88	0.77	31.4
Appr		1663	4.5	0.765	19.7	LOS B	40.1	291.5	0.76	0.70	45.1
North: Coleman Avenue (N)											
7	L2	19	0.0	0.039	34.3	LOS C	1.0	7.1	0.69	0.64	35.8
8	T1	43	0.0	0.172	40.8	LOS C	3.2	22.2	0.81	0.68	31.6
9	R2	25	0.0	0.172	47.0	LOS D	3.2	22.2	0.83	0.69	32.5
Appr		87	0.0	0.172	41.2	LOS C	3.2	22.2	0.79	0.67	32.7
West: Pennant Hills Road (W)											
10	L2	3	0.0	0.785	32.8	LOS C	38.8	288.3	0.88	0.81	38.5
11	T1	1506	7.3	0.785	27.2	LOS B	38.8	288.3	0.88	0.80	41.5
12	R2	1	100.0	0.021	57.7	LOS E	0.1	0.8	0.85	0.64	29.2
Approach		1511	7.3	0.785	27.2	LOS B	38.8	288.3	0.88	0.80	41.5
All V		3660	5.2	0.785	26.6	LOS B	40.1	291.5	0.82	0.76	41.1

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians

Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	South Full Crossing	11	14.3	LOS B	0.0	0.0	0.47	0.47
P3	North Full Crossing	5	19.9	LOS B	0.0	0.0	0.55	0.55
P4	West Full Crossing	61	42.5	LOS E	0.2	0.2	0.81	0.81
All Pedestrians		77	37.1	LOS D			0.75	0.75

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

MOVEMENT SUMMARY

Site: Pennant Hills Road/ Coleman Avenue - PM

16S9023000
Telopea Urban Renewal - Post-Development PM
4:45PM-5:45PM
Signals - Fixed Time Isolated Cycle Time $=130$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	Flows HV $\%$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km / h
South: Coleman Avenue (S)											
1	L2	100	1.1	0.294	54.2	LOS D	5.5	38.9	0.91	0.77	29.7
2	T1	23	0.0	0.768	62.2	LOS E	9.3	65.5	1.00	0.90	26.3
3	R2	120	0.9	0.768	66.8	LOS E	9.3	65.5	1.00	0.90	27.2
Appro		243	0.9	0.768	61.2	LOS E	9.3	65.5	0.96	0.85	28.1
East: Pennant Hills Road (E)											
4	L2	255	0.8	0.784	17.7	LOS B	42.5	305.6	0.70	0.70	45.1
5	T1	1656	4.0	0.784	10.7	LOS A	42.5	305.6	0.62	0.60	50.5
6	R2	46	0.0	0.242	32.7	LOS C	2.1	14.5	0.73	0.75	36.5
Appro		1957	3.5	0.784	12.2	LOS A	42.5	305.6	0.63	0.61	49.3
North: Coleman Avenue (N)											
7	L2	21	0.0	0.076	47.3	LOS D	1.5	10.6	0.82	0.68	31.9
8	T1	57	3.7	0.333	51.4	LOS D	4.8	34.2	0.91	0.74	28.9
9	R2	36	0.0	0.333	57.6	LOS E	4.8	34.2	0.93	0.75	29.7
Appro		114	1.9	0.333	52.6	LOS D	4.8	34.2	0.90	0.73	29.7
West: Pennant Hills Road (W)											
10	L2	1	0.0	0.670	21.7	LOS B	32.4	232.9	0.69	0.64	43.6
11	T1	1614	3.0	0.670	16.1	LOS B	32.4	232.9	0.69	0.64	47.5
12	R2	1	100.0	0.021	47.2	LOS D	0.1	0.7	0.75	0.65	31.9
Appro		1616	3.1	0.670	16.1	LOS B	32.4	232.9	0.69	0.64	47.4
All Ve		3929	3.1	0.784	18.0	LOS B	42.5	305.6	0.68	0.64	45.6

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians								
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Description	Demand Flow ped/h	Average Delay sec \qquad	Level of Service	Average Back Pedestrian ped	Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	South Full Crossing	33	8.1	LOS A	0.0	0.0	0.35	0.35
P3	North Full Crossing	5	12.5	LOS B	0.0	0.0	0.44	0.44
P4	West Full Crossing	60	55.5	LOS E	0.2	0.2	0.93	0.93
All Pedestrians		98	37.4	LOS D			0.71	0.71

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SITE LAYOUT

Site: Pennant Hills Road/ Evans Road/ Lloyds Avenue - AM
16S9023000
Telopea Urban Renewal - Post-Development AM
7:45AM-8:45AM
Giveway / Yield (Two-Way)

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Created: Thursday, 21 July 2016 1:51:30 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModelling\SIDRA\External Intersections\Post Development w
Existing Layout1160309-Telopea Urban Renewal-External-PD-(745-845_445-545).sip6

MOVEMENT SUMMARY

Vite: Pennant Hills Road/ Evans Road/ Lloyds Avenue - AM

16S9023000

Telopea Urban Renewal - Post-Development AM
7:45AM-8:45AM
Giveway / Yield (Two-Way)

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

∇ Site: Pennant Hills Road/ Evans Road/ Lloyds Avenue - PM

16S9023000

Telopea Urban Renewal - Post-Development PM
4:45PM-5:45PM
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Evans Road (S)											
1	L2	359	0.6	0.466	9.6	LOS A	3.0	21.1	0.63	0.94	46.6
3	R2	135	0.8	1.283	304.3	LOS F	22.0	155.0	1.00	2.92	9.8
Appr		494	0.6	1.283	90.0	LOS F	22.0	155.0	0.73	1.48	23.0
East: Pennant Hills Road (E)											
4	L2	346	1.2	0.468	5.6	LOS A	0.0	0.0	0.00	0.23	56.2
5	T1	1415	4.7	0.468	0.1	LOS A	0.0	0.0	0.00	0.09	59.0
Appr		1761	4.0	0.468	1.2	NA	0.0	0.0	0.00	0.12	58.5
North: Lloyds Avenue (N)											
7	L2	53	0.0	0.101	10.2	LOS A	0.4	2.5	0.64	0.83	46.3
Appr		53	0.0	0.101	10.2	LOS A	0.4	2.5	0.64	0.83	46.3
West: Pennant Hills Road (W)											
11	T1	1591	3.1	0.416	0.1	LOS A	0.0	0.0	0.00	0.00	59.9
12	R2	131	0.0	0.474	23.4	LOS B	1.7	11.7	0.91	1.03	40.1
Appr		1721	2.9	0.474	1.8	NA	1.7	11.7	0.07	0.08	57.7
All Ve		4028	3.1	1.283	12.5	NA	22.0	155.0	0.13	0.28	48.8

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SITE LAYOUT

Site: Kissing Point Road/ Sturt Street - AM
16S9023000
Telopea Urban Renewal - Post-Development AM
7:45AM-8:45AM
Signals - Fixed Time Isolated

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Created: Thursday, 21 July 2016 1:55:11 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModelling\SIDRA\External Intersections\Post Development w Existing Layout|160309-Telopea Urban Renewal-External-PD-(745-845_445-545).sip6

MOVEMENT SUMMARY

Site: Kissing Point Road/ Sturt Street - AM

16S9023000

Telopea Urban Renewal - Post-Development AM
7:45AM-8:45AM
Signals - Fixed Time Isolated Cycle Time $=120$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \text { \% } \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: Kissing Point Road (E)											
5	T1	1207	2.9	0.346	12.3	LOS A	11.5	82.2	0.53	0.47	56.6
6	R2	226	0.0	0.834	71.5	LOS F	14.1	98.9	1.00	1.07	27.2
Appr		1434	2.4	0.834	21.6	LOS B	14.1	98.9	0.61	0.56	48.4
North: Sturt Street (N)											
7	L2	472	0.4	0.881	53.7	LOS D	36.3	255.7	1.00	0.97	30.6
9	R2	577	1.6	0.881	58.1	LOS E	36.3	255.7	1.00	0.97	29.5
Appr		1048	1.1	0.881	56.1	LOS D	36.3	255.7	1.00	0.97	30.0
West: Kissing Point Road (W)											
10	L2	333	4.4	0.875	45.6	LOS D	42.4	305.5	0.95	0.94	34.7
11	T1	1911	2.6	0.875	39.6	LOS C	44.6	319.0	0.97	0.97	39.5
Approach		2243	2.9	0.875	40.4	LOS C	44.6	319.0	0.97	0.96	38.7
All Vehicles		4725	2.3	0.881	38.2	LOS C	44.6	319.0	0.87	0.84	38.6

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians

Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back of Queue Pedestrian ped	Prop. Distance Queued	Effective Stop Rate per ped	
P2	East Full Crossing	27	45.1	LOS E	0.1	0.1	0.87	0.87
P3	North Full Crossing	7	22.2	LOS C	0.0	0.0	0.61	0.61
All Pedestrians	35	40.3	LOS E			0.81	0.81	

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

MOVEMENT SUMMARY

Site: Kissing Point Road/ Sturt Street - PM

16S9023000
Telopea Urban Renewal - Post-Development PM
4:45PM-5:45PM
Signals - Fixed Time Isolated Cycle Time $=120$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \text { \% } \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: Kissing Point Road (E)											
5	T1	2112	1.6	0.456	4.0	LOS A	12.7	89.8	0.34	0.31	65.0
6	R2	597	0.4	0.825	48.4	LOS D	29.3	205.6	0.97	1.05	32.9
Appr		2708	1.3	0.825	13.8	LOS A	29.3	205.6	0.48	0.48	53.5
North: Sturt Street (N)											
7	L2	302	0.3	0.959	78.9	LOS F	20.3	142.2	0.64	1.01	25.3
9	R2	141	4.5	0.784	67.2	LOS E	8.8	63.8	1.00	0.90	27.3
Appr		443	1.7	0.959	75.2	LOS F	20.3	142.2	0.76	0.97	25.9
West: Kissing Point Road (W)											
10	L2	461	1.8	0.831	44.2	LOS D	33.7	239.4	0.95	0.91	34.5
11	T1	1443	1.2	0.831	38.2	LOS C	35.7	252.5	0.97	0.92	40.2
Approach		1904	1.3	0.831	39.7	LOS C	35.7	252.5	0.96	0.91	38.6
All Vehicles		5056	1.4	0.959	28.9	LOS C	35.7	252.5	0.69	0.68	43.2

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians

Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back of Pedestrian ped	Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P2	East Full Crossing	5	54.2	LOS E	0.0	0.0	0.95	0.95
P3	North Full Crossing	5	26.0	LOS C	0.0	0.0	0.66	0.66
All Pedestrians		11	40.1	LOS E			0.80	0.80

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SITE LAYOUT

Site: Kissing Point Road/ Adderton Road - AM

16S9023000
Telopea Urban Renewal - Post-Development AM
7:45AM-8:45AM
Signals - Fixed Time Isolated

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Created: Thursday, 21 July 2016 1:56:30 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModellingISIDRA\External Intersections\Post Development w Existing Layout160309-Telopea Urban Renewal-External-PD-(745-845 445-545).sip6

MOVEMENT SUMMARY

Site: Kissing Point Road/ Adderton Road - AM

16S9023000

Telopea Urban Renewal - Post-Development AM
7:45AM-8:45AM
Signals - Fixed Time Isolated Cycle Time $=120$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: Kissing Point Road (E)											
5	T1	1647	2.7	0.475	13.7	LOS A	17.5	125.1	0.59	0.53	49.1
6	R2	160	0.7	0.823	69.3	LOS E	10.1	71.4	1.00	0.92	26.9
Appr		1807	2.5	0.823	18.6	LOS B	17.5	125.1	0.63	0.57	45.7
North: Adderton Road (N)											
7	L2	323	1.0	0.530	27.5	LOS B	12.2	86.3	0.70	0.75	38.4
9	R2	755	1.1	0.858	55.6	LOS D	28.5	201.3	0.96	0.94	29.5
Appr		1078	1.1	0.858	47.1	LOS D	28.5	201.3	0.88	0.89	31.7
West: Kissing Point Road (W)											
10	L2	358	2.4	0.852	38.7	LOS C	39.6	284.3	0.96	0.93	36.1
11	T1	1828	3.5	0.852	35.8	LOS C	40.7	293.5	0.96	0.93	37.7
Appr		2186	3.3	0.852	36.3	LOS C	40.7	293.5	0.96	0.93	37.4
All Ve		5072	2.5	0.858	32.3	LOS C	40.7	293.5	0.83	0.79	38.4

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians

Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P2	East Full Crossing	5	45.1	LOS E	0.0	0.0	0.87	0.87
P3	North Full Crossing	5	24.1	LOS C	0.0	0.0	0.63	0.63
P3S	North Slip/Bypass Lane Crossing	5	19.3	LOS B	0.0	0.0	0.57	0.57
P4S	West Slip/Bypass Lane Crossing	5	19.3	LOS B	0.0	0.0	0.57	0.57
All Pe	estrians	21	26.9	LOS C			0.66	0.66

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

MOVEMENT SUMMARY

Site: Kissing Point Road/ Adderton Road - PM

16S9023000

Telopea Urban Renewal - Post-Development PM
4:45PM-5:45PM
Signals - Fixed Time Isolated Cycle Time $=120$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \text { \% } \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: Kissing Point Road (E)											
5	T1	2038	1.8	0.458	5.0	LOS A	13.6	96.8	0.38	0.35	55.5
6	R2	311	0.7	0.831	61.2	LOS E	19.1	134.7	1.00	0.93	28.6
Appr		2348	1.6	0.831	12.4	LOS A	19.1	134.7	0.46	0.42	49.4
North: Adderton Road (N)											
7	L2	173	0.0	0.223	31.0	LOS C	6.7	47.1	0.71	0.73	37.0
9	R2	333	1.6	0.802	65.2	LOS E	11.4	81.0	1.00	0.91	27.3
Appr		505	1.0	0.802	53.5	LOS D	11.4	81.0	0.90	0.85	30.0
West: Kissing Point Road (W)											
10	L2	738	3.7	0.631	22.5	LOS B	37.9	272.6	0.89	0.86	42.0
11	T1	1427	0.3	0.631	21.5	LOS B	37.9	272.6	0.79	0.72	44.2
Approach		2165	1.5	0.631	21.8	LOS B	37.9	272.6	0.82	0.77	43.4
All Vehicles		5019	1.5	0.831	20.6	LOS B	37.9	272.6	0.66	0.61	43.9

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians

Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	queue Distance m	Prop. Queued	Effective Stop Rate per ped
P2	East Full Crossing	5	54.2	LOS E	0.0	0.0	0.95	0.95
P3	North Full Crossing	5	19.3	LOS B	0.0	0.0	0.57	0.57
P3S	North Slip/Bypass Lane Crossing	5	15.0	LOS B	0.0	0.0	0.50	0.50
P4S	West Slip/Bypass Lane Crossing	5	15.0	LOS B	0.0	0.0	0.50	0.50
All P	estrians	21	25.9	LOS C			0.63	0.63

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SITE LAYOUT

Site: Pennant Hills Road/ Adderton Road - AM(signal optimisation and extra west RT lane)
16S9023000
Telopea Urban Renewal - Mitigating and Intersection Works AM
7:45AM-8:45AM
Signals - Fixed Time Isolated

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Created: Thursday, 21 July 2016 2:55:24 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModelling\SIDRA\External Intersections\Mitigating Measures rev2 1160309-Telopea Urban Renewal-External-Mit-(745-845_445-545).sip6

MOVEMENT SUMMARY

Site: Pennant Hills Road/ Adderton Road - AM(signal optimisation and extra west RT lane)

16S9023000
Telopea Urban Renewal - Mitigating and Intersection Works AM
7:45AM-8:45AM
Signals - Fixed Time Isolated Cycle Time $=130$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Movement Performance - Vehicles										
Mov OD ID Mov	Dema Total veh/h	$\begin{gathered} \text { =lows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Adderton Road (S)										
L2	238	1.3	0.911	73.9	LOS F	27.5	194.2	1.00	1.00	25.6
$3 \quad \mathrm{R} 2$	463	0.9	0.911	75.3	LOS F	27.5	194.2	1.00	1.00	25.4
Approach	701	1.1	0.911	74.9	LOS F	27.5	194.2	1.00	1.00	25.4
East: Pennant Hills Road (E)										
4 L2	488	0.6	0.951	51.8	LOS D	81.5	583.9	0.97	1.03	31.4
$5 \quad$ T1	1726	4.3	0.951	48.5	LOS D	81.5	583.9	0.99	1.07	33.1
Approach	2215	3.5	0.951	49.2	LOS D	81.5	583.9	0.98	1.06	32.7
West: Pennant Hills Road (W)										
11 T1	1129	4.5	0.845	15.3	LOS B	50.5	366.9	0.80	0.75	47.9
12 R2	180	0.6	0.845	79.9	LOS F	7.0	49.3	1.00	0.92	24.8
Approach	1309	3.9	0.845	24.2	LOS B	50.5	366.9	0.83	0.78	42.5
All Vehicles	4225	3.2	0.951	45.7	LOS D	81.5	583.9	0.94	0.96	33.5

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians

Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	South Full Crossing	5	14.3	LOS B	0.0	0.0	0.47	0.47
P4	West Full Crossing	22	51.8	LOS E	0.1	0.1	0.89	0.89
All Pedestrians		27	44.6	LOS E			0.81	0.81

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

MOVEMENT SUMMARY

Site: Pennant Hills Road/ Adderton Road - PM(signal optimisation and extra west RT lane)

16S9023000
Telopea Urban Renewal - Mitigating and Intersection Works PM
4:45PM-5:45PM
Signals - Fixed Time Isolated Cycle Time $=130$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Deg. } \\ & \text { Satn } \\ & \text { v/c } \end{aligned}$	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Adderton Road (S)											
1	L2	105	0.0	0.935	80.6	LOS F	28.1	196.6	1.00	1.03	24.5
3	R2	611	0.2	0.935	80.8	LOS F	28.1	196.6	1.00	1.03	24.4
Appr		716	0.1	0.935	80.8	LOS F	28.1	196.6	1.00	1.03	24.4
East: Pennant Hills Road (E)											
4	L2	354	0.3	0.967	69.8	LOS E	74.6	536.4	1.00	1.10	27.3
5	T1	1461	4.9	0.967	66.3	LOS E	74.6	536.4	1.00	1.13	28.5
Appr		1815	4.0	0.967	66.9	LOS E	74.6	536.4	1.00	1.13	28.3
West: Pennant Hills Road (W)											
11	T1	1445	3.5	0.949	44.7	LOS D	87.9	634.0	0.98	1.06	34.5
12	R2	424	0.2	0.949	88.1	LOS F	26.1	186.1	1.00	1.06	23.6
Approach		1869	2.8	0.949	54.5	LOS D	87.9	634.0	0.99	1.06	31.2
All Vehicles		4400	2.8	0.967	63.9	LOS E	87.9	634.0	0.99	1.08	28.7

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians

$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	f Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	South Full Crossing	13	22.2	LOS C	0.0	0.0	0.58	0.58
P4	West Full Crossing	9	50.9	LOS E	0.0	0.0	0.88	0.88
All Pedestrians		22	34.5	LOS D			0.71	0.71

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SITE LAYOUT

Site: Pennant Hills Road/ Coleman Avenue - AM(signal optimisation)

16S9023000
Telopea Urban Renewal - Mitigating and Intersection Works AM
7:45AM-8:45AM
Signals - Fixed Time Isolated

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Created: Thursday, 21 July 2016 2:14:07 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModelling\SIDRAIExternal Intersections\Mitigating Measures rev2 \160309-Telopea Urban Renewal-External-Mit-(745-845_445-545).sip6

MOVEMENT SUMMARY

Site: Pennant Hills Road/ Coleman Avenue - AM(signal optimisation)

16S9023000
Telopea Urban Renewal - Mitigating and Intersection Works AM
7:45AM-8:45AM
Signals - Fixed Time Isolated Cycle Time $=130$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	Flows HV $\%$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Coleman Avenue (S)											
1	L2	211	1.5	0.585	43.1	LOS D	10.5	74.6	0.84	0.78	32.6
2	T1	21	0.0	0.798	55.2	LOS D	11.7	82.6	0.94	0.91	27.7
3	R2	167	0.6	0.798	59.8	LOS E	11.7	82.6	0.94	0.91	28.6
Appr		399	1.1	0.798	50.8	LOS D	11.7	82.6	0.89	0.84	30.6
East: Pennant Hills Road (E)											
4	L2	76	4.2	0.788	25.9	LOS B	42.3	307.9	0.82	0.77	41.3
5	T1	1545	4.6	0.788	18.8	LOS B	42.3	307.9	0.76	0.70	45.7
6	R2	42	0.0	0.381	42.8	LOS D	2.2	15.2	0.79	0.77	33.2
Appr		1663	4.5	0.788	19.7	LOS B	42.3	307.9	0.76	0.71	45.1
North: Coleman Avenue (N)											
7	L2	19	0.0	0.040	38.7	LOS C	1.0	6.8	0.74	0.66	34.2
8	T1	43	0.0	0.177	41.9	LOS C	3.3	23.1	0.83	0.69	31.3
9	R2	25	0.0	0.177	47.0	LOS D	3.3	23.1	0.83	0.69	32.5
Appr		87	0.0	0.177	42.7	LOS D	3.3	23.1	0.81	0.68	32.3
West: Pennant Hills Road (W)											
10	L2	3	0.0	0.667	23.3	LOS B	31.3	233.0	0.72	0.66	42.8
11	T1	1506	7.3	0.667	17.7	LOS B	31.3	233.0	0.71	0.65	46.5
12	R2	1	100.0	0.020	48.7	LOS D	0.1	0.7	0.77	0.64	31.5
Approach		1511	7.3	0.667	17.8	LOS B	31.3	233.0	0.71	0.65	46.5
All V		3660	5.2	0.798	22.8	LOS B	42.3	307.9	0.76	0.70	43.0

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians								
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Description	Demand Flow ped/h	Average Delay sec \qquad	Level of Service	Average Back Pedestrian ped	Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	South Full Crossing	11	14.3	LOS B	0.0	0.0	0.47	0.47
P3	North Full Crossing	5	13.8	LOS B	0.0	0.0	0.46	0.46
P4	West Full Crossing	61	42.5	LOS E	0.2	0.2	0.81	0.81
All Pedestrians		77	36.7	LOS D			0.74	0.74

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

MOVEMENT SUMMARY

Site: Pennant Hills Road/ Coleman Avenue - PM(signal optimisation)

16S9023000
Telopea Urban Renewal - Post-Development PM
4:45PM-5:45PM
Signals - Fixed Time Isolated Cycle Time $=130$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	Flows HV $\%$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Coleman Avenue (S)											
1	L2	100	1.1	0.294	54.2	LOS D	5.5	38.9	0.91	0.77	29.7
2	T1	23	0.0	0.775	62.6	LOS E	9.3	65.8	1.00	0.91	26.2
3	R2	120	0.9	0.775	67.2	LOS E	9.3	65.8	1.00	0.91	27.1
Appr		243	0.9	0.775	61.4	LOS E	9.3	65.8	0.96	0.85	28.0
East: Pennant Hills Road (E)											
4	L2	255	0.8	0.800	18.0	LOS B	44.6	320.8	0.72	0.72	44.9
5	T1	1656	4.0	0.800	10.9	LOS A	44.6	320.8	0.62	0.60	50.5
6	R2	46	0.0	0.365	26.7	LOS B	1.9	13.0	0.62	0.74	38.8
Appr		1957	3.5	0.800	12.2	LOS A	44.6	320.8	0.64	0.62	49.3
North: Coleman Avenue (N)											
7	L2	21	0.0	0.078	51.7	LOS D	1.4	9.8	0.86	0.69	30.6
8	T1	57	3.7	0.344	52.6	LOS D	5.0	35.8	0.92	0.75	28.7
9	R2	36	0.0	0.344	57.7	LOS E	5.0	35.8	0.93	0.75	29.7
Appr		114	1.9	0.344	54.0	LOS D	5.0	35.8	0.91	0.74	29.3
West: Pennant Hills Road (W)											
10	L2	1	0.0	0.585	14.6	LOS B	24.3	174.6	0.52	0.48	47.6
11	T1	1614	3.0	0.585	9.0	LOS A	24.3	174.6	0.52	0.48	52.3
12	R2	1	100.0	0.021	39.2	LOS C	0.0	0.6	0.68	0.65	34.3
Approach		1616	3.1	0.585	9.1	LOS A	24.3	174.6	0.52	0.48	52.2
All V		3929	3.1	0.800	15.1	LOS B	44.6	320.8	0.62	0.58	47.2

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians								
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Description	Demand Flow ped/h	Average Delay sec \qquad	Level of Service	Average Back Pedestrian ped	Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	South Full Crossing	33	8.1	LOS A	0.0	0.0	0.35	0.35
P3	North Full Crossing	5	7.8	LOS A	0.0	0.0	0.35	0.35
P4	West Full Crossing	60	55.5	LOS E	0.2	0.2	0.93	0.93
All Pedestrians		98	37.2	LOS D			0.70	0.70

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SITE LAYOUT

Site: Pennant Hills Road/ Evans Road/ Lloyds Avenue - AM(signal construction)

16S9023000
Telopea Urban Renewal - Mitigating and Intersection Works AM
7:45AM-8:45AM
Signals - Fixed Time Isolated

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Created: Thursday, 21 July 2016 2:20:54 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModelling\SIDRA\External Intersections\Mitigating Measures rev2 1160309-Telopea Urban Renewal-External-Mit-(745-845_445-545).sip6

MOVEMENT SUMMARY

Site: Pennant Hills Road/ Evans Road/ Lloyds Avenue - AM(signal construction)

16S9023000
Telopea Urban Renewal - Mitigating and Intersection Works AM
7:45AM-8:45AM
Signals - Fixed Time Isolated Cycle Time $=130$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Movement Performance - Vehicles										
Mov OD ID Mov	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Deg. } \\ & \text { Satn } \\ & \text { v/c } \end{aligned}$	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Evans Road (S)										
L2	197	1.1	0.375	44.6	LOS D	10.0	70.5	0.85	0.79	32.2
3 R2	148	2.1	0.620	63.7	LOS E	9.2	65.3	1.00	0.81	27.5
Approach	345	1.5	0.620	52.8	LOS D	10.0	70.5	0.91	0.80	30.0
East: Pennant Hills Road (E)										
4 L2	364	1.2	0.743	22.6	LOS B	37.7	271.4	0.75	0.76	42.0
$5 \quad$ T1	1389	5.0	0.743	17.8	LOS B	38.2	278.9	0.76	0.72	45.9
Approach	1754	4.2	0.743	18.8	LOS B	38.2	278.9	0.76	0.73	45.0
North: Lloyds Avenue (N)										
7 L2	108	2.9	0.553	65.9	LOS E	6.8	48.4	0.99	0.79	27.1
Approach	108	2.9	0.553	65.9	LOS E	6.8	48.4	0.99	0.79	27.1
West: Pennant Hills Road (W)										
11 T1	1465	7.2	0.631	16.1	LOS B	28.3	210.5	0.67	0.62	47.5
12 R2	252	2.1	0.771	44.3	LOS D	12.9	92.1	1.00	0.98	32.7
Approach	1717	6.4	0.771	20.2	LOS B	28.3	210.5	0.72	0.67	44.5
All Vehicles	3924	4.9	0.771	23.7	LOS B	38.2	278.9	0.76	0.71	42.2

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
The results of iterative calculations indicate a somewhat unstable solution. See the Diagnostics section in the Detailed Output report.

Movement Performance - Pedestrians

Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	South Full Crossing	53	12.1	LOS B	0.1	0.1	0.43	0.43
P3	North Full Crossing	53	10.0	LOS B	0.1	0.1	0.39	0.39
P4	West Full Crossing	53	59.3	LOS E	0.2	0.2	0.96	0.96
All Pedestrians		158	27.1	LOS C			0.59	0.59

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

[^8]
MOVEMENT SUMMARY

Site: Pennant Hills Road/ Evans Road/ Lloyds Avenue - PM(signal construction)

16S9023000
Telopea Urban Renewal - Mitigating and Intersection Works PM
4:45PM-5:45PM
Signals - Fixed Time Isolated Cycle Time $=130$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
The results of iterative calculations indicate a somewhat unstable solution. See the Diagnostics section in the Detailed Output report.

Movement Performance - Pedestrians

Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	South Full Crossing	53	12.1	LOS B	0.1	0.1	0.43	0.43
P3	North Full Crossing	53	10.0	LOS B	0.1	0.1	0.39	0.39
P4	West Full Crossing	53	59.3	LOS E	0.2	0.2	0.96	0.96
All Pedestrians		158	27.1	LOS C			0.59	0.59

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

[^9]
SITE LAYOUT

Site: Kissing Point Road/ Sturt Street - AM(signal optimisation)

16S9023000
Telopea Urban Renewal - Mitigating and Intersection Works AM
7:45AM-8:45AM
Signals - Fixed Time Isolated

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Created: Thursday, 21 July 2016 2:57:02 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModelling ${ }^{2}$ SIDRAIExternal Intersections 1 Mitigating Measures rev2 I160309-Telopea Urban Renewal-External-Mit-(745-845_445-545).sip6

MOVEMENT SUMMARY

Site: Kissing Point Road/ Sturt Street - AM(signal optimisation)

16S9023000
Telopea Urban Renewal - Mitigating and Intersection Works AM
7:45AM-8:45AM
Signals - Fixed Time Isolated Cycle Time = 120 seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
Mov	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \text { \% } \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: Kissing Point Road (E)											
5	T1	1207	2.9	0.400	18.2	LOS B	13.9	100.0	0.65	0.57	51.9
6	R2	226	0.0	0.292	27.8	LOS B	8.8	61.3	0.71	0.86	40.4
Appr		1434	2.4	0.400	19.7	LOS B	13.9	100.0	0.66	0.61	49.7
North: Sturt Street (N)											
7	L2	472	0.4	0.759	40.0	LOS C	27.0	189.9	0.94	0.87	34.6
9	R2	577	1.6	0.759	40.1	LOS C	27.0	189.9	0.94	0.87	34.5
Appr		1048	1.1	0.759	40.1	LOS C	27.0	190.4	0.94	0.87	34.6
West: Kissing Point Road (W)											
10	L2	333	4.4	0.750	30.2	LOS C	33.2	239.5	0.85	0.82	40.6
11	T1	1911	2.6	0.750	23.7	LOS B	34.2	244.7	0.85	0.78	47.7
Approach		2243	2.9	0.750	24.7	LOS B	34.2	244.7	0.85	0.79	46.5
All Vehicles		4725	2.3	0.759	26.6	LOS B	34.2	244.7	0.81	0.75	44.0

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians								
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Description	Demand Flow ped/h	Average Delay \qquad sec	Level of Service	Average Back Pedestrian ped	Queue Distance \qquad m	Prop. Queued	Effective Stop Rate per ped
P2	East Full Crossing	27	36.9	LOS D	0.1	0.1	0.78	0.78
P3	North Full Crossing	7	17.1	LOS B	0.0	0.0	0.53	0.53
All Pedestrians		35	32.7	LOS D			0.73	0.73

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Thursday, 21 July 2016 2:23:14 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModelling\SIDRA\External Intersections\Mitigating Measures rev2 \160309-Telopea Urban Renewal-External-Mit-(745-845_445-545).sip6

MOVEMENT SUMMARY

Site: Kissing Point Road/ Sturt Street - PM(signal optimisation)

16S9023000
Telopea Urban Renewal - Mitigating and Intersection Works PM
4:45PM-5:45PM
Signals - Fixed Time Isolated Cycle Time = 120 seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \text { \% } \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: Kissing Point Road (E)											
5	T1	2112	1.6	0.673	21.1	LOS B	29.3	208.0	0.78	0.71	49.9
6	R2	597	0.4	0.781	39.0	LOS C	25.0	175.5	0.93	1.04	35.9
Appr		2708	1.3	0.781	25.0	LOS B	29.3	208.0	0.81	0.78	45.9
North: Sturt Street (N)											
7	L2	302	0.3	0.455	36.2	LOS C	13.5	94.7	0.82	0.80	35.9
9	R2	141	4.5	0.219	33.2	LOS C	5.7	41.4	0.74	0.74	36.6
Appr		443	1.7	0.455	35.2	LOS C	13.5	94.7	0.79	0.78	36.1
West: Kissing Point Road (W)											
10	L2	461	1.8	0.614	26.4	LOS B	24.5	173.9	0.74	0.79	41.5
11	T1	1443	1.2	0.614	20.0	LOS B	25.5	180.2	0.74	0.68	50.2
Approach		1904	1.3	0.614	21.6	LOS B	25.5	180.2	0.74	0.71	47.8
All Vehicles		5056	1.4	0.781	24.6	LOS B	29.3	208.0	0.78	0.75	45.5

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
The results of iterative calculations indicate a somewhat unstable solution. See the Diagnostics section in the Detailed Output report.

Movement Performance - Pedestrians

$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	f Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P2	East Full Crossing	5	38.4	LOS D	0.0	0.0	0.80	0.80
P3	North Full Crossing	5	16.0	LOS B	0.0	0.0	0.52	0.52
All Pedestrians		11	27.2	LOS C			0.66	0.66

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

[^10]
SITE LAYOUT

Site: Kissing Point Road/ Adderton Road - AM(signal optimisation)

16S9023000
Telopea Urban Renewal - Mitigating and Intersection Works AM
7:45AM-8:45AM
Signals - Fixed Time Isolated

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Created: Thursday, 21 July 2016 2:56:37 PM
Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModelling\SIDRA\External Intersections\Mitigating Measures rev2 1160309-Telopea Urban Renewal-External-Mit-(745-845_445-545).sip6

MOVEMENT SUMMARY

Site: Kissing Point Road/ Adderton Road - AM(signal optimisation)

16S9023000

Telopea Urban Renewal - Mitigating and Intersection Works AM
7:45AM-8:45AM
Signals - Fixed Time Isolated Cycle Time $=120$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Movement Performance - Vehicles											
Mov ID	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km / h
East: Kissing Point Road (E)											
5	T1	1647	2.7	0.475	13.7	LOS A	17.5	125.1	0.59	0.53	49.1
6	R2	160	0.7	0.823	69.3	LOS E	10.1	71.4	1.00	0.92	26.9
Appr		1807	2.5	0.823	18.6	LOS B	17.5	125.1	0.63	0.57	45.7
North: Adderton Road (N)											
7	L2	323	1.0	0.530	27.5	LOS B	12.2	86.3	0.70	0.75	38.4
9	R2	755	1.1	0.858	55.6	LOS D	28.5	201.3	0.96	0.94	29.5
Appr		1078	1.1	0.858	47.1	LOS D	28.5	201.3	0.88	0.89	31.7
West: Kissing Point Road (W)											
10	L2	358	2.4	0.852	38.7	LOS C	39.6	284.3	0.96	0.93	36.1
11	T1	1828	3.5	0.852	35.8	LOS C	40.7	293.5	0.96	0.93	37.7
Appro		2186	3.3	0.852	36.3	LOS C	40.7	293.5	0.96	0.93	37.4
All Ve		5072	2.5	0.858	32.3	LOS C	40.7	293.5	0.83	0.79	38.4

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians

Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P2	East Full Crossing	5	45.1	LOS E	0.0	0.0	0.87	0.87
P3	North Full Crossing	5	24.1	LOS C	0.0	0.0	0.63	0.63
P3S	North Slip/Bypass Lane Crossing	5	19.3	LOS B	0.0	0.0	0.57	0.57
P4S	West Slip/Bypass Lane Crossing	5	19.3	LOS B	0.0	0.0	0.57	0.57
All Pe	estrians	21	26.9	LOS C			0.66	0.66

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

MOVEMENT SUMMARY

Site: Kissing Point Road/ Adderton Road - PM(signal optimisation)

16S9023000

Telopea Urban Renewal - Mitigating and Intersection Works PM
4:45PM-5:45PM
Signals - Fixed Time Isolated Cycle Time $=120$ seconds (User-Given Cycle Time)
Variable Sequence Analysis applied. The results are given for the selected output sequence.

Movement Performance - Vehicles										
Mov OD ID Mov	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Deg. } \\ & \text { Satn } \\ & \text { v/c } \end{aligned}$	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: Kissing Point Road (E)										
5 T1	2038	1.8	0.458	5.0	LOS A	13.6	96.8	0.38	0.35	55.5
6 R2	311	0.7	0.831	61.2	LOS E	19.1	134.7	1.00	0.93	28.6
Approach	2348	1.6	0.831	12.4	LOSA	19.1	134.7	0.46	0.42	49.4
North: Adderton Road (N)										
7 L2	173	0.0	0.223	31.0	LOS C	6.7	47.1	0.71	0.73	37.0
9 R2	333	1.6	0.802	65.2	LOS E	11.4	81.0	1.00	0.91	27.3
Approach	505	1.0	0.802	53.5	LOS D	11.4	81.0	0.90	0.85	30.0
West: Kissing Point Road (W)										
10 L2	738	3.7	0.631	22.5	LOS B	37.9	272.6	0.89	0.86	42.0
11 T1	1427	0.3	0.631	21.5	LOS B	37.9	272.6	0.79	0.72	44.2
Approach	2165	1.5	0.631	21.8	LOS B	37.9	272.6	0.82	0.77	43.4
All Vehicles	5019	1.5	0.831	20.6	LOS B	37.9	272.6	0.66	0.61	43.9

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Movement Performance - Pedestrians

$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	f Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P2	East Full Crossing	5	54.2	LOS E	0.0	0.0	0.95	0.95
P3	North Full Crossing	5	19.3	LOS B	0.0	0.0	0.57	0.57
P3S	North Slip/Bypass Lane Crossing	5	15.0	LOS B	0.0	0.0	0.50	0.50
P4S	West Slip/Bypass Lane Crossing	5	15.0	LOS B	0.0	0.0	0.50	0.50
All Pedestrians		21	25.9	LOS C			0.63	0.63

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SITE LAYOUT

Site: Adderton Road/ Manson Street - AM 0-5 Years
16S9023000
Telopea Urban Renewal - 0-5 AM
Adderton Road/ Manson Street
Giveway / Yield (Two-Way)

Adderton Road (N)

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Created: Tuesday, 31 January 2017 4:56:44 PM
Project: P:\16S1600-1699\16S1627000 LaHCR Ad Hoc Traffic and Transport AdvicelModelling\Post Developmentl160309-Telopea Urban Renewal-Internal
-0-5 Years.sip6

MOVEMENT SUMMARY

V Site: Adderton Road/ Manson Street - AM 0-5 Years

16S9023000

Telopea Urban Renewal - 0-5 AM
Adderton Road/ Manson Street
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Adderton Road (S)											
2	T1	411	0.3	0.495	8.9	LOS A	5.2	36.4	0.74	0.23	43.5
3	R2	125	3.4	0.495	17.9	LOS B	5.2	36.4	0.74	0.23	41.9
Appro		536	1.0	0.495	11.0	NA	5.2	36.4	0.74	0.23	43.1
East: Manson Street (E)											
4	L2	118	0.9	0.541	13.5	LOS A	2.4	16.8	0.84	1.08	37.7
6	R2	65	3.2	0.541	30.3	LOS C	2.4	16.8	0.84	1.08	37.6
Appro		183	1.7	0.541	19.5	LOS B	2.4	16.8	0.84	1.08	37.7
North: Adderton Road (N)											
7	L2	255	0.8	0.495	4.6	LOS A	0.0	0.0	0.00	0.13	48.4
8	T1	773	1.8	0.495	0.1	LOS A	0.0	0.0	0.00	0.13	49.1
Appro		1027	1.5	0.495	1.2	NA	0.0	0.0	0.00	0.13	49.0
All Ve		1746	1.4	0.541	6.1	NA	5.2	36.4	0.32	0.26	45.8

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

V Site: Adderton Road/ Manson Street - PM 0-5 Years

16S9023000

Telopea Urban Renewal - 0-5 PM
Adderton Road/ Manson Street
Giveway / Yield (Two-Way)

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SITE LAYOUT

Site: Sturt Street/ Manson Street/ Community Centre Access - AM 0-5 Years
16S9023000
Telopea Urban Renewal - 0-5 AM
Sturt Street/ Manson Street/ Access
Giveway / Yield (Two-Way)

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Created: Tuesday, 31 January 2017 4:56:44 PM
Project: P:\16S1600-1699\16S1627000 LaHCR Ad Hoc Traffic and Transport Advice\ModellinglPost Development 160309 -Telopea Urban Renewal-Internal - 0-5 Years.sip6

MOVEMENT SUMMARY

V Site: Sturt Street/ Manson Street/ Community Centre Access - AM 0-5 Years

16S9023000

Telopea Urban Renewal - 0-5 AM
Sturt Street/ Manson Street/ Access
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Manson Street (S)											
1	L2	35	3.0	0.423	3.6	LOS A	2.1	14.6	0.30	0.51	38.2
2	T1	7	0.0	0.423	3.6	LOS A	2.1	14.6	0.30	0.51	38.5
3	R2	373	1.7	0.423	4.6	LOS A	2.1	14.6	0.30	0.51	38.3
Appr		415	1.8	0.423	4.5	LOS A	2.1	14.6	0.30	0.51	38.3
East: Sturt Street (E)											
4	L2	85	3.7	0.060	5.6	LOS A	0.0	0.1	0.01	0.43	54.5
5	T1	31	17.2	0.060	0.0	LOS A	0.0	0.1	0.01	0.43	56.1
6	R2	1	0.0	0.060	5.8	LOS A	0.0	0.1	0.01	0.43	54.7
Appr		117	7.2	0.060	4.1	NA	0.0	0.1	0.01	0.43	54.9
North: Access											
7	L2	9	0.0	0.012	5.7	LOS A	0.0	0.3	0.14	0.53	53.4
8	T1	5	0.0	0.012	5.5	LOS A	0.0	0.3	0.14	0.53	53.9
9	R2	1	0.0	0.012	6.3	LOS A	0.0	0.3	0.14	0.53	53.5
Approach		16	0.0	0.012	5.7	LOS A	0.0	0.3	0.14	0.53	53.6
West: Sturt Street (W)											
10	L2	31	0.0	0.054	5.7	LOS A	0.2	1.2	0.13	0.27	55.2
11	T1	51	10.4	0.054	0.1	LOS A	0.2	1.2	0.13	0.27	56.7
12	R2	22	0.0	0.054	5.9	LOS A	0.2	1.2	0.13	0.27	55.5
Appr		103	5.1	0.054	3.0	NA	0.2	1.2	0.13	0.27	56.0
All Ve		651	3.2	0.423	4.2	NA	2.1	14.6	0.21	0.46	43.1

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Tuesday, 31 January 2017 4:53:33 PM
Project: P:\16S1600-1699\16S1627000 LaHCR Ad Hoc Traffic and Transport AdvicelModelling\Post Developmentl160309-Telopea Urban Renewal-Internal - 0-5 Years.sip6

MOVEMENT SUMMARY

Vite: Sturt Street/ Manson Street/ Community Centre Access - 0-5 Years

16S9023000

Telopea Urban Renewal - 0-5 PM
Sturt Street/ Manson Street/ Access
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
Mov	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Manson Street (S)											
1	L2	24	0.0	0.078	4.7	LOS A	0.3	1.9	0.20	0.52	46.2
2	T1	5	0.0	0.078	4.5	LOS A	0.3	1.9	0.20	0.52	46.5
3	R2	53	0.0	0.078	5.6	LOS A	0.3	1.9	0.20	0.52	46.3
Appro		82	0.0	0.078	5.3	LOS A	0.3	1.9	0.20	0.52	46.3
East: Sturt Street (E)											
4	L2	141	0.0	0.105	5.6	LOS A	0.1	0.6	0.02	0.41	54.8
5	T1	60	8.8	0.105	0.0	LOS A	0.1	0.6	0.02	0.41	56.2
6	R2	9	0.0	0.105	5.7	LOS A	0.1	0.6	0.02	0.41	54.8
Appro		211	2.5	0.105	4.0	NA	0.1	0.6	0.02	0.41	55.2
North: Access											
7	L2	6	0.0	0.018	5.6	LOS A	0.1	0.4	0.13	0.54	53.4
8	T1	7	0.0	0.018	5.8	LOS A	0.1	0.4	0.13	0.54	53.9
9	R2	6	0.0	0.018	6.2	LOS A	0.1	0.4	0.13	0.54	53.4
Approach		20	0.0	0.018	5.9	LOS A	0.1	0.4	0.13	0.54	53.6
West: Sturt Street (W)											
10	L2	1	0.0	0.026	6.1	LOS A	0.1	0.7	0.19	0.18	55.9
11	T1	33	16.1	0.026	0.3	LOS A	0.1	0.7	0.19	0.18	57.4
12	R2	14	0.0	0.026	6.2	LOS A	0.1	0.7	0.19	0.18	56.1
Appro		47	11.1	0.026	2.1	NA	0.1	0.7	0.19	0.18	57.0
All Ve		360	2.9	0.105	4.1	NA	0.3	1.9	0.09	0.41	53.0

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SITE LAYOUT

Site: Sturt Street/ Evans Road - AM 0-5 Years

16S9023000
Telopea Urban Renewal - 0-5 AM
Sturt Street/ Evans Road
Giveway / Yield (Two-Way)

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Created: Tuesday, 31 January 2017 4:56:44 PM
Project: P:\16S1600-1699\16S1627000 LaHCR Ad Hoc Traffic and Transport AdvicelModelling\Post Developmentl160309-Telopea Urban Renewal-Internal
-0-5 Years.sip6

MOVEMENT SUMMARY

∇ Site: Sturt Street/ Evans Road - AM 0-5 Years

16S9023000

Telopea Urban Renewal - 0-5 AM
Sturt Street/ Evans Road
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \text { \% } \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
5	T1	122	7.8	0.066	0.0	LOS A	0.0	0.0	0.00	0.00	40.0
6	R2	402	1.3	0.338	5.6	LOS A	1.9	13.2	0.54	0.69	37.8
Appro		524	2.8	0.338	4.3	NA	1.9	13.2	0.42	0.53	38.3
North: Evans Road (N)											
7	L2	388	3.0	0.442	4.5	LOS A	2.8	20.1	0.35	0.55	37.6
9	R2	71	1.5	0.442	14.7	LOS B	2.8	20.1	0.35	0.55	37.6
Appro		459	2.8	0.442	6.1	LOS A	2.8	20.1	0.35	0.55	37.6
West: Sturt Street (W)											
10	L2	267	0.8	0.202	3.4	LOS A	0.0	0.0	0.00	0.30	39.2
11	T1	141	6.0	0.202	0.0	LOS A	0.0	0.0	0.00	0.30	39.0
Appro		408	2.6	0.202	2.3	NA	0.0	0.0	0.00	0.30	39.1
All Ve		1392	2.7	0.442	4.3	NA	2.8	20.1	0.27	0.47	38.3

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Tuesday, 31 January 2017 4:53:39 PM
Project: P:\16S1600-1699\16S1627000 LaHCR Ad Hoc Traffic and Transport AdvicelModelling\Post Developmentl160309-Telopea Urban Renewal-Internal - 0-5 Years.sip6

MOVEMENT SUMMARY

∇ Site: Sturt Street/ Evans Road - PM 0-5 Years

16S9023000

Telopea Urban Renewal - 0-5 PM
Sturt Street/ Evans Road
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \text { \% } \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: Sturt Street (E)											
5	T1	209	3.5	0.110	0.0	LOS A	0.0	0.0	0.00	0.00	50.0
6	R2	204	1.0	0.125	4.9	LOS A	0.6	4.3	0.22	0.51	46.0
Appr		414	2.3	0.125	2.4	NA	0.6	4.3	0.11	0.25	48.0
North: Evans Road (N)											
7	L2	183	1.7	0.230	4.8	LOS A	1.0	7.2	0.19	0.54	45.8
9	R2	73	0.0	0.230	8.7	LOS A	1.0	7.2	0.19	0.54	45.7
Appr		256	1.2	0.230	5.9	LOS A	1.0	7.2	0.19	0.54	45.8
West: Sturt Street (W)											
10	L2	28	0.0	0.049	4.6	LOS A	0.0	0.0	0.00	0.16	48.6
11	T1	71	9.0	0.049	0.0	LOS A	0.0	0.0	0.00	0.16	49.1
Approach		99	6.4	0.049	1.3	NA	0.0	0.0	0.00	0.16	48.9
All Vehicles		768	2.5	0.230	3.5	NA	1.0	7.2	0.12	0.33	47.3

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Tuesday, 31 January 2017 4:54:13 PM
Project: P:\16S1600-1699\16S1627000 LaHCR Ad Hoc Traffic and Transport AdvicelModelling\Post Developmentl160309-Telopea Urban Renewal-Internal - 0-5 Years.sip6

SITE LAYOUT

Site: Evans Road/ Shortland Street - AM 0-5 Years
16S9023000
Telopea Urban Renewal - 0-5 AM
Evans Road/ Shortland Street
Giveway / Yield (Two-Way)

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Created: Tuesday, 31 January 2017 4:56:44 PM
Project: P:\16S1600-1699\16S1627000 LaHCR Ad Hoc Traffic and Transport AdvicelModelling\Post Developmentl160309-Telopea Urban Renewal-Internal
-0-5 Years.sip6

MOVEMENT SUMMARY

V Site: Evans Road/ Shortland Street - AM 0-5 Years

16S9023000

Telopea Urban Renewal - 0-5 AM
Evans Road/ Shortland Street
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
1	L2	18	11.8	0.314	4.7	LOS A	0.0	0.0	0.00	0.01	49.2
2	T1	643	0.7	0.314	0.0	LOS A	0.0	0.0	0.00	0.01	49.9
Appr		661	1.0	0.314	0.2	NA	0.0	0.0	0.00	0.01	49.9
North: Evans Road (N)											
8	T1	345	2.1	0.204	0.8	LOS A	0.5	3.8	0.15	0.04	49.1
9	R2	25	25.0	0.204	9.9	LOS A	0.5	3.8	0.15	0.04	48.0
Appr		371	3.7	0.204	1.5	NA	0.5	3.8	0.15	0.04	49.0
West: Shortland Street (W)											
10	L2	71	13.4	0.283	9.0	LOS A	1.1	8.2	0.69	0.90	42.7
12	R2	68	7.7	0.283	14.2	LOS B	1.1	8.2	0.69	0.90	42.6
Appr		139	10.6	0.283	11.6	LOS B	1.1	8.2	0.69	0.90	42.6
All Ve		1171	3.0	0.314	1.9	NA	1.1	8.2	0.13	0.13	48.6

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Tuesday, 31 January 2017 4:53:48 PM
Project: P:\16S1600-1699\16S1627000 LaHCR Ad Hoc Traffic and Transport AdvicelModelling\Post Developmentl160309-Telopea Urban Renewal-Internal - 0-5 Years.sip6

MOVEMENT SUMMARY

V Site: Evans Road/ Shortland Street - PM (Ex)

16S9023000

Telopea Urban Renewal - 0-5 PM
Evans Road/ Shortland Street
Giveway / Yield (Two-Way)

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SITE LAYOUT

Site: Adderton Road/ Manson Street - AM 0-15 Years

16S9023000
Telopea Urban Renewal - 0-15 Years AM
Adderton Road/ Manson Street
Giveway / Yield (Two-Way)

Adderton Road (N)

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Created: Tuesday, 31 January 2017 5:00:56 PM
Project: P:\16S1600-1699\16S1627000 LaHCR Ad Hoc Traffic and Transport AdvicelModelling\Post Development\160309-Telopea Urban Renewal-Internal - 0-15 Years.sip6

MOVEMENT SUMMARY

V Site: Adderton Road/ Manson Street - AM 0-15 Years

16S9023000
Telopea Urban Renewal - 0-15 Years AM
Adderton Road/ Manson Street
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Adderton Road (S)											
2	T1	443	0.2	0.496	8.4	LOS A	5.2	36.5	0.71	0.21	43.7
3	R2	119	3.5	0.496	18.0	LOS B	5.2	36.5	0.71	0.21	42.2
Appro		562	0.9	0.496	10.4	NA	5.2	36.5	0.71	0.21	43.4
East: Manson Street (E)											
4	L2	129	0.8	0.685	17.7	LOS B	3.5	24.5	0.88	1.21	35.4
6	R2	85	2.5	0.685	35.8	LOS C	3.5	24.5	0.88	1.21	35.3
Appro		215	1.5	0.685	24.9	LOS B	3.5	24.5	0.88	1.21	35.4
North: Adderton Road (N)											
7	L2	255	0.8	0.495	4.6	LOS A	0.0	0.0	0.00	0.13	48.4
8	T1	773	1.8	0.495	0.1	LOS A	0.0	0.0	0.00	0.13	49.1
Appro		1027	1.5	0.495	1.2	NA	0.0	0.0	0.00	0.13	49.0
All Ve		1804	1.3	0.685	6.9	NA	5.2	36.5	0.33	0.28	45.3

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Tuesday, 31 January 2017 4:51:43 PM
Project: P:\16S1600-1699\16S1627000 LaHCR Ad Hoc Traffic and Transport AdvicelModelling\Post Developmentl160309-Telopea Urban Renewal-Internal - 0-15 Years.sip6

MOVEMENT SUMMARY

V Site: Adderton Road/ Manson Street - PM 0-15 Years

16S9023000
Telopea Urban Renewal - 0-15 Years PM
Adderton Road/ Manson Street
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Adderton Road (S)											
2	T1	863	0.2	0.483	0.7	LOS A	1.7	12.0	0.17	0.06	49.1
3	R2	83	0.0	0.483	8.1	LOS A	1.7	12.0	0.17	0.06	48.2
Appro		946	0.2	0.483	1.3	NA	1.7	12.0	0.17	0.06	49.0
East: Manson Street (E)											
4	L2	43	0.0	0.574	12.0	LOS B	2.4	16.7	0.82	1.05	35.8
6	R2	112	0.0	0.574	28.5	LOS D	2.4	16.7	0.82	1.05	35.7
Appro		155	0.0	0.574	23.9	LOS C	2.4	16.7	0.82	1.05	35.7
North: Adderton Road (N)											
7	L2	83	0.0	0.221	4.6	LOS A	0.0	0.0	0.00	0.10	48.8
8	T1	380	0.8	0.221	0.0	LOS A	0.0	0.0	0.00	0.10	49.4
Appro		463	0.7	0.221	0.8	NA	0.0	0.0	0.00	0.10	49.3
All Ve		1564	0.3	0.574	3.4	NA	2.4	16.7	0.18	0.17	47.6

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Tuesday, 31 January 2017 4:52:32 PM
Project: P:\16S1600-1699\16S1627000 LaHCR Ad Hoc Traffic and Transport Advice\Modelling\Post Developmentl160309-Telopea Urban Renewal-Internal - 0-15 Years.sip6

SITE LAYOUT

Site: Sturt Street/ Manson Street/ Community Centre Access - AM 0-15 Years
16S9023000
Telopea Urban Renewal - 0-15 Years AM
Sturt Street/ Manson Street/ Access
Giveway / Yield (Two-Way)

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Created: Tuesday, 31 January 2017 5:00:56 PM
Project: P:\16S1600-1699\16S1627000 LaHCR Ad Hoc Traffic and Transport Advice\ModellinglPost Developmentl160309-Telopea Urban Renewal-Internal

- 0-15 Years.sip6

MOVEMENT SUMMARY

V Site: Sturt Street/ Manson Street/ Community Centre Access - AM 0-15 Years

16S9023000

Telopea Urban Renewal - 0-15 Years AM
Sturt Street/ Manson Street/ Access
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
Mov	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \text { } \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Manson Street (S)											
1	L2	35	3.0	0.534	4.8	LOS A	3.9	27.4	0.47	0.75	37.2
2	T1	3	0.0	0.534	5.3	LOS A	3.9	27.4	0.47	0.75	37.5
3	R2	405	1.6	0.534	7.3	LOS A	3.9	27.4	0.47	0.75	37.4
Appro		443	1.7	0.534	7.1	LOS A	3.9	27.4	0.47	0.75	37.3
East: Sturt Street (E)											
4	L2	95	3.3	0.087	5.6	LOS A	0.1	0.7	0.04	0.35	55.0
5	T1	65	8.1	0.087	0.1	LOS A	0.1	0.7	0.04	0.35	56.6
6	R2	11	0.0	0.087	5.9	LOS A	0.1	0.7	0.04	0.35	55.2
Appro		171	4.9	0.087	3.5	NA	0.1	0.7	0.04	0.35	55.6
North: Access											
7	L2	42	0.0	0.110	5.9	LOS A	0.4	2.9	0.26	0.57	52.9
8	T1	29	0.0	0.110	6.1	LOS A	0.4	2.9	0.26	0.57	53.4
9	R2	46	0.0	0.110	6.9	LOS A	0.4	2.9	0.26	0.57	53.0
Approach		118	0.0	0.110	6.3	LOS A	0.4	2.9	0.26	0.57	53.1
West: Sturt Street (W)											
10	L2	2	0.0	0.066	6.0	LOS A	0.2	1.1	0.11	0.11	56.9
11	T1	104	5.1	0.066	0.1	LOS A	0.2	1.1	0.11	0.11	58.5
12	R2	22	0.0	0.066	6.1	LOS A	0.2	1.1	0.11	0.11	57.1
Appro		128	4.1	0.066	1.3	NA	0.2	1.1	0.11	0.11	58.2
All Ve		860	2.4	0.534	5.4	NA	3.9	27.4	0.31	0.55	44.4

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Tuesday, 31 January 2017 4:52:04 PM
Project: P:\16S1600-1699\16S1627000 LaHCR Ad Hoc Traffic and Transport AdvicelModelling\Post Development\160309-Telopea Urban Renewal-Internal - 0-15 Years.sip6

MOVEMENT SUMMARY

Vite: Sturt Street/ Manson Street/ Community Centre Access - PM 0-15 Years

16S9023000

Telopea Urban Renewal - 0-15 Years PM
Sturt Street/ Manson Street/ Access
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
Mov	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \text { } \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Manson Street (S)											
1	L2	24	0.0	0.137	5.1	LOS A	0.5	3.5	0.39	0.62	45.6
2	T1	29	0.0	0.137	5.9	LOS A	0.5	3.5	0.39	0.62	46.0
3	R2	62	0.0	0.137	7.1	LOS A	0.5	3.5	0.39	0.62	45.8
Appro		116	0.0	0.137	6.4	LOS A	0.5	3.5	0.39	0.62	45.8
East: Sturt Street (E)											
4	L2	125	0.0	0.168	5.7	LOS A	0.4	2.9	0.11	0.27	55.4
5	T1	164	3.2	0.168	0.2	LOS A	0.4	2.9	0.11	0.27	56.9
6	R2	42	0.0	0.168	6.1	LOS A	0.4	2.9	0.11	0.27	55.5
Appro		332	1.6	0.168	3.0	NA	0.4	2.9	0.11	0.27	56.2
North: Access											
7	L2	16	0.0	0.017	5.8	LOS A	0.1	0.4	0.20	0.54	53.1
8	T1	3	0.0	0.017	6.9	LOS A	0.1	0.4	0.20	0.54	53.6
9	R2	2	0.0	0.017	7.7	LOS A	0.1	0.4	0.20	0.54	53.1
Approach		21	0.0	0.017	6.2	LOS A	0.1	0.4	0.20	0.54	53.2
West: Sturt Street (W)											
10	L2	46	0.0	0.084	5.8	LOS A	0.1	1.1	0.11	0.20	56.1
11	T1	105	5.0	0.084	0.2	LOS A	0.1	1.1	0.11	0.20	57.6
12	R2	14	0.0	0.084	6.6	LOS A	0.1	1.1	0.11	0.20	56.3
Appro		165	3.2	0.084	2.3	NA	0.1	1.1	0.11	0.20	57.1
All Ve		634	1.7	0.168	3.5	NA	0.5	3.5	0.16	0.32	54.0

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SITE LAYOUT

Site: Sturt Street/ Evans Road - AM 0-15 Years

16S9023000
Telopea Urban Renewal - 0-15 Years AM
Sturt Street/ Evans Road
Giveway / Yield (Two-Way)

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Created: Tuesday, 31 January 2017 5:00:56 PM
Project: P:\16S1600-1699\16S1627000 LaHCR Ad Hoc Traffic and Transport Advice\Modelling\Post Developmentl160309-Telopea Urban Renewal-Internal

- 0-15 Years.sip6

MOVEMENT SUMMARY

∇ Site: Sturt Street/ Evans Road - AM 0-15 Years

16S9023000

Telopea Urban Renewal - 0-15 Years AM
Sturt Street/ Evans Road
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: Sturt Street (E)											
5	T1	177	5.4	0.094	0.0	LOS A	0.0	0.0	0.00	0.00	40.0
6	R2	394	1.3	0.380	6.7	LOS A	2.3	16.1	0.61	0.83	37.3
Appr		571	2.6	0.380	4.6	NA	2.3	16.1	0.42	0.57	38.1
North: Evans Road (N)											
7	L2	354	3.3	0.565	7.0	LOS A	4.9	34.8	0.51	0.81	36.2
9	R2	101	1.0	0.565	20.2	LOS C	4.9	34.8	0.51	0.81	36.1
Appr		455	2.8	0.565	9.9	LOS A	4.9	34.8	0.51	0.81	36.2
West: Sturt Street (W)											
10	L2	295	0.7	0.256	3.4	LOS A	0.0	0.0	0.00	0.26	39.3
11	T1	226	3.7	0.256	0.0	LOS A	0.0	0.0	0.00	0.26	39.1
Appr		521	2.0	0.256	2.0	NA	0.0	0.0	0.00	0.26	39.2
All Ve		1546	2.5	0.565	5.3	NA	4.9	34.8	0.31	0.54	37.9

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Tuesday, 31 January 2017 4:52:13 PM
Project: P:\16S1600-1699\16S1627000 LaHCR Ad Hoc Traffic and Transport AdvicelModelling\Post Developmentl160309-Telopea Urban Renewal-Internal - 0-15 Years.sip6

MOVEMENT SUMMARY

∇ Site: Sturt Street/ Evans Road - PM 0-15 Years

16S9023000

Telopea Urban Renewal - 0-15 Years PM
Sturt Street/ Evans Road
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \text { \% } \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: Sturt Street (E)											
5	T1	320	2.3	0.167	0.0	LOS A	0.0	0.0	0.00	0.00	50.0
6	R2	169	1.2	0.114	5.3	LOS A	0.5	3.8	0.32	0.54	45.8
Appro		489	1.9	0.167	1.8	NA	0.5	3.8	0.11	0.19	48.4
North: Evans Road (N)											
7	L2	175	1.8	0.356	5.4	LOS A	1.8	13.0	0.36	0.63	44.7
9	R2	125	0.0	0.356	11.4	LOS B	1.8	13.0	0.36	0.63	44.6
Appro		300	1.1	0.356	7.9	LOSA	1.8	13.0	0.36	0.63	44.7
West: Sturt Street (W)											
10	L2	65	0.0	0.096	4.6	LOS A	0.0	0.0	0.00	0.18	48.5
11	T1	132	4.8	0.096	0.0	LOS A	0.0	0.0	0.00	0.18	48.9
Appro		197	3.2	0.096	1.5	NA	0.0	0.0	0.00	0.18	48.8
All Ve		986	1.9	0.356	3.6	NA	1.8	13.0	0.17	0.32	47.3

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Tuesday, 31 January 2017 4:52:51 PM
Project: P:\16S1600-1699\16S1627000 LaHCR Ad Hoc Traffic and Transport AdvicelModelling\Post Developmentl160309-Telopea Urban Renewal-Internal - 0-15 Years.sip6

SITE LAYOUT

Site: Evans Road/ Shortland Street - AM 0-15 Years
16S9023000
Telopea Urban Renewal - 0-15 Years AM
Evans Road/ Shortland Street
Giveway / Yield (Two-Way)

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Created: Tuesday, 31 January 2017 5:00:56 PM
Project: P:\16S1600-1699\16S1627000 LaHCR Ad Hoc Traffic and Transport AdvicelModelling\Post Development\160309-Telopea Urban Renewal-Internal - 0-15 Years.sip6

MOVEMENT SUMMARY

V Site: Evans Road/ Shortland Street - AM 0-15 Years

16S9023000

Telopea Urban Renewal - 0-15 Years AM
Evans Road/ Shortland Street
Giveway / Yield (Two-Way)

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Tuesday, 31 January 2017 4:52:23 PM
Project: P:\16S1600-1699\16S1627000 LaHCR Ad Hoc Traffic and Transport Advice\Modelling\Post Developmentl160309-Telopea Urban Renewal-Internal - 0-15 Years.sip6

MOVEMENT SUMMARY

V Site: Evans Road/ Shortland Street - PM 0-15 Years

16S9023000

Telopea Urban Renewal - 0-15 Years PM
Evans Road/ Shortland Street
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { Flows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Evans Road (S)											
1	L2	28	0.0	0.093	4.6	LOS A	0.0	0.0	0.00	0.08	49.1
2	T1	167	0.0	0.093	0.0	LOS A	0.0	0.0	0.00	0.08	49.5
Appr		196	0.0	0.093	0.7	NA	0.0	0.0	0.00	0.08	49.5
North: Evans Road (N)											
8	T1	180	1.8	0.122	0.3	LOS A	0.4	2.7	0.16	0.11	49.0
9	R2	47	13.3	0.122	5.5	LOS A	0.4	2.7	0.16	0.11	48.1
Appr		227	4.2	0.122	1.3	NA	0.4	2.7	0.16	0.11	48.8
West: Shortland Street (W)											
10	L2	71	11.9	0.146	5.3	LOS A	0.5	4.0	0.32	0.59	45.7
12	R2	82	0.0	0.146	6.4	LOS A	0.5	4.0	0.32	0.59	45.7
Approach		153	5.5	0.146	5.9	LOS A	0.5	4.0	0.32	0.59	45.7
All Vehicles		576	3.1	0.146	2.3	NA	0.5	4.0	0.15	0.23	48.1

Level of Service (LOS) Method: Delay (HCM 2000).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Tuesday, 31 January 2017 4:53:05 PM
Project: P:\16S1600-1699\16S1627000 LaHCR Ad Hoc Traffic and Transport Advice\Modelling\Post Development\160309-Telopea Urban Renewal-Internal -0-15 Years.sip6

Appendix D

Traffic Generation

Traffic Generation Calculation - 2036 Yields (provided 3 June 2016)

Block ID	New dwellings (2036)	Existing dwellings to remain	Total dwellings (2036)	Existing dwellings	New total dwellings (2036)	New LD dwelling	New MD dwellings	New HD dwellings	RMS Guide 2002 Rates			Net Traffic Generation Resulting from Development
									LD	MD	HD	
1	27	0	27	27	0	0			0.85			0
2	78	49	127	25	102	102			0.85			87
3	302	6	308	25	283			283			0.29	82
4	200	21	221	38	183			183			0.29	53
5	300	1	301	18	283			283			0.29	82
6	124	5	129	70	59			59			0.29	17
7	454	90	544	71	473		95	378		0.65	0.29	171
9	368	0	368	25	343			343			0.29	99
11	68	1	69	46	23	23			0.85			20
13	317	0	317	84	233		117	117		0.65	0.29	110
14	349	0	349	20	329			329			0.29	95
15	500	3	503	91	412		41	371		0.65	0.29	134
16	61	0	61	47	14	14			0.85			12
17	290	7	297	39	258			258			0.29	75
18	36	21	57	28	29	29			0.85			25
19	562	158	720	89	631			631			0.29	183
20	127	2	129	58	71	71			0.85			60
Core (8,10,12)	1,527	0	1,527	278	1,249			1,249			0.29	362
Total	5,690	364	6,054	1,079	4,975							1667

Melbourne	Brisbane	Adelaide	Townsville
A Level 25,55 Collins Street PO Box 24055 MELBOURNE VIC 3000	A Level 4, 283 Elizabeth Street BRISBANE QLD 4000 GPO Box 115	A Suite 4, Level 1, 136 The Parade PO Box 3421 NORWOOD SA 5067	A Level 1, 25 Sturt Street PO Box 1064 TOWNSVILLE QLD 4810
P +61398519600	BRISBANE QLD 4001	P +61883343600	P +6174722 2765
E melbourne@gta.com.au	P +61731135000 E brisbane@gta.com.au	E adelaide@gta.com.au	E townsville@gta.com.au
Sydney	Canberra	Gold Coast	Perth
A Level 6, 15 Help Street CHATSWOOD NSW 2067	A Tower A, Level 5, 7 London Circuit	A Level 9, Corporate Centre 2 Box 37, 1 Corporate Court	A Level 27, 44 St Georges Terrace PERTH WA 6000
PO Box 5254	Canberra ACT 2600	BUNDALL QLD 4217	P +61863614634
WEST CHATSWOOD NSW 1515	P +61262434826	P +6175510 4800	E perth@gta.com.au
P +612 84481800	E canberra@gta.com.au	F +6175510 4814	
E sydney@gta.com.au		E goldcoast@gta.com.au	

[^0]: Source: Sydway Publishing Pty Ltd

[^1]: 1 Critic al Gap is the minimum time (headway) between successive vehicles in the opposing (major) traffic stream that is acceptable forentry by opposing (minor) stream vehicles.
 2 Minimum Departures is the minimum number of departures per lane perminute, similar to the number of departures at the end of the green period at signalised intersections.

[^2]: 3 Crash data follows the Roads and Maritime Services-Road User Movement coding

[^3]: 4 Now the "Transport Performance and Analytics" section of Transport for NSW.
 5 Corresponding to TZ\#1131.

[^4]: Source: A Vision for Telopea Background Report, Urbis 2017

[^5]: 6 The traffic generation rates provided in Roads and Maritime Technic al Direction 2013-04a only provided rates for low density and high density residential developments. For consistency, GTA adopted rates for low-, medium- and high-density residential developments provided in the Guide to Traffic Generating Developments (RMS, 2002).
 7 This is the total retail area.

[^6]: 8 This staging is for traffic management upgrades only a nd not reflective of confimed development staging.

[^7]: Source: Reproduced from Austroads-Guide to Traffic Management Part 8: Local Area Traffic Management

[^8]: SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
 Organisation: GTA CONSULTANTS | Processed: Thursday, 21 July 2016 2:20:51 PM
 Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModellingISIDRAIExternal Intersections\Mitigating Measures rev2
 \160309-Telopea Urban Renewal-External-Mit-(745-845_445-545).sip6

[^9]: SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
 Organisation: GTA CONSULTANTS | Processed: Thursday, 21 July 2016 2:21:34 PM
 Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModellingISIDRAIExternal Intersections\Mitigating Measures rev2
 \160309-Telopea Urban Renewal-External-Mit-(745-845_445-545).sip6

[^10]: SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
 Organisation: GTA CONSULTANTS | Processed: Thursday, 21 July 2016 2:24:05 PM
 Project: P:\16S9000-9099\16S9023000 Telopea Urban Renewal Master Planning ProjectlModellingISIDRAIExternal Intersections\Mitigating Measures rev2
 \160309-Telopea Urban Renewal-External-Mit-(745-845_445-545).sip6

